summaryrefslogtreecommitdiff
path: root/compute/ARMComputeEx/src/core/NEON/kernels/NEActivationLayerKernelEx.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'compute/ARMComputeEx/src/core/NEON/kernels/NEActivationLayerKernelEx.cpp')
-rw-r--r--compute/ARMComputeEx/src/core/NEON/kernels/NEActivationLayerKernelEx.cpp730
1 files changed, 730 insertions, 0 deletions
diff --git a/compute/ARMComputeEx/src/core/NEON/kernels/NEActivationLayerKernelEx.cpp b/compute/ARMComputeEx/src/core/NEON/kernels/NEActivationLayerKernelEx.cpp
new file mode 100644
index 000000000..648705ba9
--- /dev/null
+++ b/compute/ARMComputeEx/src/core/NEON/kernels/NEActivationLayerKernelEx.cpp
@@ -0,0 +1,730 @@
+/*
+ * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * Copyright (c) 2017-2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "arm_compute/core/NEON/kernels/NEActivationLayerKernelEx.h"
+
+#include "arm_compute/core/CPP/Validate.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/NEON/NEAsymm.h"
+#include "arm_compute/core/NEON/NEFixedPoint.h"
+#include "arm_compute/core/NEON/NEMath.h"
+#include "arm_compute/core/NEON/NESymm.h"
+#include "arm_compute/core/NEON/wrapper/wrapper.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+
+#include <arm_neon.h>
+#include <array>
+#include <cmath>
+#include <map>
+#include <set>
+
+using namespace arm_compute;
+namespace
+{
+Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output,
+ const ActivationLayerInfo &activation_info)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(
+ input, 1, DataType::U8, DataType::QASYMM8, DataType::QSYMM16, DataType::F16, DataType::F32);
+
+ static std::set<ActivationLayerInfo::ActivationFunction> qasymm8_supported_activations = {
+ ActivationLayerInfo::ActivationFunction::RELU,
+ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU,
+ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
+ ActivationLayerInfo::ActivationFunction::LOGISTIC,
+ ActivationLayerInfo::ActivationFunction::TANH};
+ static std::set<ActivationLayerInfo::ActivationFunction> qsymm16_supported_activations = {
+ ActivationLayerInfo::ActivationFunction::LOGISTIC,
+ ActivationLayerInfo::ActivationFunction::TANH};
+ const DataType data_type = input->data_type();
+ const QuantizationInfo &oq_info =
+ (output != nullptr) ? output->quantization_info() : input->quantization_info();
+ const ActivationLayerInfo::ActivationFunction f_act = activation_info.activation();
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ is_data_type_quantized_asymmetric(data_type) &&
+ (qasymm8_supported_activations.count(f_act) == 0),
+ "For QASYMM8 only tanh, logistic, relu and lower/upper bounded relu are supported");
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized_symmetric(data_type) &&
+ (qsymm16_supported_activations.count(f_act) == 0),
+ "For QSYMM16 only tanh and logistic are supported");
+ ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(data_type) &&
+ (f_act == ActivationLayerInfo::ActivationFunction::TANH) &&
+ (oq_info != QuantizationInfo(1.f / 128.f, 128)));
+ ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(data_type) &&
+ (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) &&
+ (oq_info != QuantizationInfo(1.f / 256.f, 0)));
+
+ ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) &&
+ (f_act == ActivationLayerInfo::ActivationFunction::TANH) &&
+ (oq_info != QuantizationInfo(1.f / 32768.f, 0)));
+ ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_symmetric(data_type) &&
+ (f_act == ActivationLayerInfo::ActivationFunction::LOGISTIC) &&
+ (oq_info != QuantizationInfo(1.f / 32768.f, 0)));
+
+ // Checks performed when output is configured
+ if ((output != nullptr) && (output->total_size() != 0))
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
+ }
+
+ return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
+{
+ // Configure kernel window
+ Window win = calculate_max_window(*input, Steps());
+
+ if (output != nullptr)
+ {
+ // Output auto inizialitation if not yet initialized
+ auto_init_if_empty(*output, *input->clone());
+
+ // NEActivationLayerKernelEx doesn't need padding so update_window_and_padding() can be skipped
+ Coordinates coord;
+ coord.set_num_dimensions(output->num_dimensions());
+ output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
+ }
+
+ return std::make_pair(Status{}, win);
+}
+
+inline uint32x4_t vreinterpret_unsigend_int(const float32x4_t &vec)
+{
+ return vreinterpretq_u32_f32(vec);
+}
+
+inline float32x4_t vreinterpret_floating_point(const uint32x4_t &vec)
+{
+ return vreinterpretq_f32_u32(vec);
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+inline uint16x8_t vreinterpret_unsigend_int(const float16x8_t &vec)
+{
+ return vreinterpretq_u16_f16(vec);
+}
+inline float16x8_t vreinterpret_floating_point(const uint16x8_t &vec)
+{
+ return vreinterpretq_f16_u16(vec);
+}
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC*/
+} // namespace
+
+NEActivationLayerKernelEx::NEActivationLayerKernelEx()
+ : _input(nullptr), _output(nullptr), _func(nullptr), _act_info()
+{
+}
+
+void NEActivationLayerKernelEx::configure(ITensor *input, ITensor *output,
+ ActivationLayerInfo activation_info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input);
+
+ _input = input;
+ _act_info = activation_info;
+ _output = input;
+
+ // Out-of-place calculation
+ if (output != nullptr)
+ {
+ _output = output;
+ }
+
+ // Disabled activation, thus no operation needed
+ if (!activation_info.enabled())
+ {
+ _func = nullptr;
+ }
+
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(
+ input->info(), (output != nullptr) ? output->info() : nullptr, activation_info));
+
+ // Activation functions : FP32
+ static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_f32 = {
+ {ActivationFunction::ABS,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::ABS, float>},
+ {ActivationFunction::LINEAR,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LINEAR, float>},
+ {ActivationFunction::LOGISTIC,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LOGISTIC, float>},
+ {ActivationFunction::RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::RELU, float>},
+ {ActivationFunction::BOUNDED_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::BOUNDED_RELU, float>},
+ {ActivationFunction::LU_BOUNDED_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LU_BOUNDED_RELU, float>},
+ {ActivationFunction::LEAKY_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LEAKY_RELU, float>},
+ {ActivationFunction::SOFT_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::SOFT_RELU, float>},
+ {ActivationFunction::ELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::ELU, float>},
+ {ActivationFunction::SQRT,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::SQRT, float>},
+ {ActivationFunction::SQUARE,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::SQUARE, float>},
+ {ActivationFunction::TANH,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::TANH, float>},
+ {ActivationFunction::IDENTITY,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::IDENTITY, float>},
+ };
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ // Activation functions : FP16
+ static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_f16 = {
+ {ActivationFunction::ABS,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::ABS, float16_t>},
+ {ActivationFunction::LINEAR,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LINEAR, float16_t>},
+ {ActivationFunction::LOGISTIC,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LOGISTIC, float16_t>},
+ {ActivationFunction::RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::RELU, float16_t>},
+ {ActivationFunction::BOUNDED_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::BOUNDED_RELU, float16_t>},
+ {ActivationFunction::LU_BOUNDED_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LU_BOUNDED_RELU, float16_t>},
+ {ActivationFunction::LEAKY_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LEAKY_RELU, float16_t>},
+ {ActivationFunction::SOFT_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::SOFT_RELU, float16_t>},
+ {ActivationFunction::ELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::ELU, float16_t>},
+ {ActivationFunction::SQRT,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::SQRT, float16_t>},
+ {ActivationFunction::SQUARE,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::SQUARE, float16_t>},
+ {ActivationFunction::TANH,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::TANH, float16_t>},
+ {ActivationFunction::IDENTITY,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::IDENTITY, float16_t>},
+ };
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC*/
+
+ // Activation functions : QASYMM8
+ static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_qasymm8 = {
+ {ActivationFunction::LOGISTIC,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LOGISTIC, qasymm8_t>},
+ {ActivationFunction::BOUNDED_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::BOUNDED_RELU, qasymm8_t>},
+ {ActivationFunction::LU_BOUNDED_RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LU_BOUNDED_RELU, qasymm8_t>},
+ {ActivationFunction::RELU,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::RELU, qasymm8_t>},
+ {ActivationFunction::TANH,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::TANH, qasymm8_t>},
+ {ActivationFunction::IDENTITY,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::IDENTITY, qasymm8_t>},
+ };
+
+ // Activation functions : QSYMM16
+ static std::map<ActivationFunction, ActivationFunctionExecutorPtr> act_map_qsymm16 = {
+ {ActivationFunction::LOGISTIC,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::LOGISTIC, qsymm16_t>},
+ {ActivationFunction::TANH,
+ &NEActivationLayerKernelEx::activation<ActivationFunction::TANH, qsymm16_t>},
+ };
+
+ switch (input->info()->data_type())
+ {
+ case DataType::QASYMM8:
+ _func = act_map_qasymm8[activation_info.activation()];
+ break;
+ case DataType::QSYMM16:
+ _func = act_map_qsymm16[activation_info.activation()];
+ break;
+ case DataType::F32:
+ _func = act_map_f32[activation_info.activation()];
+ break;
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F16:
+ _func = act_map_f16[activation_info.activation()];
+ break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ default:
+ ARM_COMPUTE_ERROR("Unsupported data type.");
+ }
+
+ // Configure kernel window
+ auto win_config =
+ validate_and_configure_window(input->info(), (output != nullptr) ? output->info() : nullptr);
+ ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+ ICPPKernel::configure(win_config.second);
+}
+
+template <ActivationLayerInfo::ActivationFunction F, typename T>
+typename std::enable_if<arm_compute::utils::traits::is_floating_point<T>::value, void>::type
+NEActivationLayerKernelEx::activation(const Window &window)
+{
+ /** NEON vector tag type. */
+ using ExactTagType =
+ typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
+
+ const int window_step_x = 16 / sizeof(T);
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const ActivationFunction act = F;
+
+ Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
+ win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input(_input, win_collapsed);
+ Iterator output(_output, win_collapsed);
+
+ const auto infinity = wrapper::vdup_n(std::numeric_limits<T>::infinity(), ExactTagType{});
+ const auto epsilon = wrapper::vdup_n(static_cast<T>(1e-24), ExactTagType{});
+ const auto const_1 = wrapper::vdup_n(static_cast<T>(1.f), ExactTagType{});
+ const auto const_0 = wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
+ const auto va = wrapper::vdup_n(static_cast<T>(_act_info.a()), ExactTagType{});
+ const auto vb = wrapper::vdup_n(static_cast<T>(_act_info.b()), ExactTagType{});
+ const auto a = static_cast<T>(_act_info.a());
+ const auto b = static_cast<T>(_act_info.b());
+
+ execute_window_loop(
+ win_collapsed,
+ [&](const Coordinates &) {
+ const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
+ const auto output_ptr = reinterpret_cast<T *>(output.ptr());
+
+ wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
+
+ // Compute S elements per iteration
+ int x = window_start_x;
+
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto vin = wrapper::vloadq(input_ptr + x);
+ switch (act)
+ {
+ case ActivationFunction::ABS:
+ tmp = wrapper::vabs(vin);
+ break;
+ case ActivationFunction::LINEAR:
+ tmp = wrapper::vmla(vb, va, vin);
+ break;
+ case ActivationFunction::LOGISTIC:
+ // exp(-vin)
+ tmp = wrapper::vexpq(wrapper::vneg(vin));
+
+ // NaN -> INF
+ tmp = vreinterpret_floating_point(wrapper::vorr(
+ wrapper::vand(wrapper::vnot(wrapper::vceq(tmp, tmp)),
+ vreinterpret_unsigend_int(infinity)),
+ wrapper::vand(wrapper::vceq(tmp, tmp), vreinterpret_unsigend_int(tmp))));
+
+ // 1 / 1 + tmp
+ tmp = wrapper::vinv(wrapper::vadd(const_1, tmp));
+ break;
+ case ActivationFunction::RELU:
+ tmp = wrapper::vmax(const_0, vin);
+ break;
+ case ActivationFunction::BOUNDED_RELU:
+ tmp = wrapper::vmin(va, wrapper::vmax(const_0, vin));
+ break;
+ case ActivationFunction::LU_BOUNDED_RELU:
+ tmp = wrapper::vmin(va, wrapper::vmax(vb, vin));
+ break;
+ case ActivationFunction::LEAKY_RELU:
+ tmp = wrapper::vbsl(wrapper::vcgt(vin, const_0), vin, wrapper::vmul(va, vin));
+ break;
+ case ActivationFunction::SOFT_RELU:
+ tmp = wrapper::vlog(wrapper::vadd(const_1, wrapper::vexpq(vin)));
+ break;
+ case ActivationFunction::ELU:
+ tmp = wrapper::vbsl(wrapper::vcge(vin, const_0), vin,
+ wrapper::vmul(va, wrapper::vsub(wrapper::vexpq(vin), const_1)));
+ break;
+ case ActivationFunction::SQRT:
+ tmp = wrapper::vinv(wrapper::vinvsqrt(vin + epsilon));
+ break;
+ case ActivationFunction::SQUARE:
+ tmp = wrapper::vmul(vin, vin);
+ break;
+ case ActivationFunction::TANH:
+ tmp = wrapper::vmul(va, wrapper::vtanh(wrapper::vmul(vb, vin)));
+ break;
+ case ActivationFunction::IDENTITY:
+ tmp = vin;
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Unsupported activation function");
+ }
+ wrapper::vstore(output_ptr + x, tmp);
+ }
+
+ // Compute left-over elements
+ for (; x < window_end_x; ++x)
+ {
+ const T in = *(reinterpret_cast<const T *>(input_ptr + x));
+ T tmp;
+ switch (act)
+ {
+ case ActivationFunction::ABS:
+ tmp = std::abs(in);
+ break;
+ case ActivationFunction::LINEAR:
+ tmp = a * in + b;
+ break;
+ case ActivationFunction::LOGISTIC:
+ tmp = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-in));
+ break;
+ case ActivationFunction::RELU:
+ tmp = std::max<T>(static_cast<T>(0), in);
+ break;
+ case ActivationFunction::BOUNDED_RELU:
+ tmp = std::min<T>(a, std::max(static_cast<T>(0), in));
+ break;
+ case ActivationFunction::LU_BOUNDED_RELU:
+ tmp = std::min<T>(a, std::max<T>(b, in));
+ break;
+ case ActivationFunction::LEAKY_RELU:
+ tmp = (in > 0) ? in : a * in;
+ break;
+ case ActivationFunction::SOFT_RELU:
+ tmp = std::log(static_cast<T>(1) + std::exp(in));
+ break;
+ case ActivationFunction::ELU:
+ tmp = (in >= 0) ? in : a * (std::exp(in) - 1);
+ break;
+ case ActivationFunction::SQRT:
+ tmp = std::sqrt(in);
+ break;
+ case ActivationFunction::SQUARE:
+ tmp = in * in;
+ break;
+ case ActivationFunction::TANH:
+ tmp = a * std::tanh(b * in);
+ break;
+ case ActivationFunction::IDENTITY:
+ tmp = in;
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Unsupported activation function");
+ }
+ *(output_ptr + x) = tmp;
+ }
+ },
+ input, output);
+}
+
+template <ActivationLayerInfo::ActivationFunction F, typename T>
+typename std::enable_if<std::is_same<T, qasymm8_t>::value, void>::type
+NEActivationLayerKernelEx::activation(const Window &window)
+{
+ const int window_step_x = 16 / sizeof(T);
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const ActivationFunction act = F;
+
+ Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
+ win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input(_input, win_collapsed);
+ Iterator output(_output, win_collapsed);
+
+ const UniformQuantizationInfo qi_in = _input->info()->quantization_info().uniform();
+ const UniformQuantizationInfo qi_out = _output->info()->quantization_info().uniform();
+ const qasymm8x16_t va = vdupq_n_u8(quantize_qasymm8(_act_info.a(), qi_in));
+ const qasymm8x16_t vb = vdupq_n_u8(quantize_qasymm8(_act_info.b(), qi_in));
+ const qasymm8_t a = quantize_qasymm8(_act_info.a(), qi_in);
+ const qasymm8_t b = quantize_qasymm8(_act_info.b(), qi_in);
+ const qasymm8_t const_0 = quantize_qasymm8(0.f, qi_in);
+ const qasymm8x16_t vconst_0 = vdupq_n_u8(const_0);
+ const auto vconst_1 = vdupq_n_f32(1.f);
+ const float32x4_t va_f32 = vdupq_n_f32(_act_info.a());
+ const float32x4_t vb_f32 = vdupq_n_f32(_act_info.b());
+ const float a_f32 = _act_info.a();
+ const float b_f32 = _act_info.b();
+
+ // Initialise scale/offset for re-quantization
+ float s = qi_in.scale / qi_out.scale;
+ float o = -qi_in.offset * s + qi_out.offset;
+ float32x4_t vs = vdupq_n_f32(s);
+ float32x4_t vo = vdupq_n_f32(o);
+
+ execute_window_loop(
+ win_collapsed,
+ [&](const Coordinates &) {
+ const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
+ const auto output_ptr = reinterpret_cast<T *>(output.ptr());
+
+ wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
+
+ // Compute S elements per iteration
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto vin = wrapper::vloadq(input_ptr + x);
+ if (act == ActivationFunction::RELU)
+ {
+ // Perform activation
+ tmp = vmaxq_u8(vconst_0, vin);
+ // Re-quantize to new output space
+ tmp = vmlaq_qasymm8(tmp, vs, vo);
+ }
+ else if (act == ActivationFunction::BOUNDED_RELU)
+ {
+ // Perform activation
+ tmp = vminq_u8(va, vmaxq_u8(vconst_0, vin));
+ // Re-quantize to new output space
+ tmp = vmlaq_qasymm8(tmp, vs, vo);
+ }
+ else if (act == ActivationFunction::LU_BOUNDED_RELU)
+ {
+ // Perform activation
+ tmp = vminq_u8(va, vmaxq_u8(vb, vin));
+ // Re-quantize to new output space
+ tmp = vmlaq_qasymm8(tmp, vs, vo);
+ }
+ else if (act == ActivationFunction::LOGISTIC)
+ {
+ // De-quantize
+ const auto vin_deq = vdequantize(vin, qi_in);
+ // Perform activation
+ const float32x4x4_t tmp_dep = {{
+ wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(
+ vin_deq.val[0])))),
+ wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(
+ vin_deq.val[1])))),
+ wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(
+ vin_deq.val[2])))),
+ wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(
+ vin_deq.val[3])))),
+ }};
+ // Re-quantize to new output space
+ tmp = vquantize(tmp_dep, qi_out);
+ }
+ else if (act == ActivationFunction::TANH)
+ {
+ // De-quantize
+ const auto vin_deq = vdequantize(vin, qi_in);
+ // Perform activation
+ const float32x4x4_t tmp_dep = {{
+ wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[0], vb_f32))),
+ wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[1], vb_f32))),
+ wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[2], vb_f32))),
+ wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[3], vb_f32))),
+ }};
+ // Re-quantize to new output space
+ tmp = vquantize(tmp_dep, qi_out);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("Unsupported activation function");
+ }
+ wrapper::vstore(output_ptr + x, tmp);
+ }
+
+ // Compute left-over elements
+ for (; x < window_end_x; ++x)
+ {
+ T in = *(reinterpret_cast<const T *>(input_ptr + x));
+ T tmp;
+ if (act == ActivationFunction::RELU)
+ {
+ tmp = std::max(const_0, in);
+ tmp = std::max<int32_t>(0, std::min<int32_t>(tmp * s + o, 255));
+ }
+ else if (act == ActivationFunction::BOUNDED_RELU)
+ {
+ tmp = std::min(a, std::max(const_0, in));
+ tmp = std::max<int32_t>(0, std::min<int32_t>(tmp * s + o, 255));
+ }
+ else if (act == ActivationFunction::LU_BOUNDED_RELU)
+ {
+ tmp = std::min(a, std::max(b, in));
+ tmp = std::max<int32_t>(0, std::min<int32_t>(tmp * s + o, 255));
+ }
+ else if (act == ActivationFunction::LOGISTIC)
+ {
+ float tmp_f = dequantize_qasymm8(in, qi_in);
+ tmp_f = 1.f / (1.f + std::exp(-tmp_f));
+ tmp = quantize_qasymm8(tmp_f, qi_out);
+ }
+ else if (act == ActivationFunction::TANH)
+ {
+ float tmp_f = dequantize_qasymm8(in, qi_in);
+ tmp_f = a_f32 * std::tanh(b_f32 * tmp_f);
+ tmp = quantize_qasymm8(tmp_f, qi_out);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("Unsupported activation function");
+ }
+ *(output_ptr + x) = tmp;
+ }
+ },
+ input, output);
+}
+
+template <ActivationLayerInfo::ActivationFunction F, typename T>
+typename std::enable_if<std::is_same<T, qsymm16_t>::value, void>::type
+NEActivationLayerKernelEx::activation(const Window &window)
+{
+ const int window_step_x = 16 / sizeof(T);
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const ActivationFunction act = F;
+
+ Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
+ win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input(_input, win_collapsed);
+ Iterator output(_output, win_collapsed);
+
+ const UniformQuantizationInfo qi_in = _input->info()->quantization_info().uniform();
+ const UniformQuantizationInfo qi_out = _output->info()->quantization_info().uniform();
+ const auto vconst_1 = vdupq_n_f32(1.f);
+ const float32x4_t va_f32 = vdupq_n_f32(_act_info.a());
+ const float32x4_t vb_f32 = vdupq_n_f32(_act_info.b());
+ const float a_f32 = _act_info.a();
+ const float b_f32 = _act_info.b();
+
+ execute_window_loop(
+ win_collapsed,
+ [&](const Coordinates &) {
+ const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
+ const auto output_ptr = reinterpret_cast<T *>(output.ptr());
+
+ wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
+ ARM_COMPUTE_UNUSED(tmp);
+
+ // Compute S elements per iteration
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto vin = wrapper::vloadq(input_ptr + x);
+ if (act == ActivationFunction::LOGISTIC)
+ {
+ // De-quantize
+ const auto vin_deq = vdequantize_int16(vin, qi_in.scale);
+ // Perform activation
+ const float32x4x2_t tmp_dep = {{
+ wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(
+ vin_deq.val[0])))),
+ wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(
+ vin_deq.val[1])))),
+ }};
+ // Re-quantize to new output space
+ tmp = vquantize_int16(tmp_dep, qi_out.scale);
+ }
+ else if (act == ActivationFunction::TANH)
+ {
+ // De-quantize
+ const auto vin_deq = vdequantize_int16(vin, qi_in.scale);
+ // Perform activation
+ const float32x4x2_t tmp_dep = {{
+ wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[0], vb_f32))),
+ wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[1], vb_f32))),
+ }};
+ // Re-quantize to new output space
+ tmp = vquantize_int16(tmp_dep, qi_out.scale);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("Unsupported activation function");
+ }
+ wrapper::vstore(output_ptr + x, tmp);
+ }
+
+ // Compute left-over elements
+ for (; x < window_end_x; ++x)
+ {
+ T in = *(reinterpret_cast<const T *>(input_ptr + x));
+ T tmp;
+ if (act == ActivationFunction::LOGISTIC)
+ {
+ float tmp_f = dequantize_qsymm16(in, qi_in.scale);
+ tmp_f = 1.f / (1.f + std::exp(-tmp_f));
+ tmp = quantize_qsymm16(tmp_f, qi_out);
+ }
+ else if (act == ActivationFunction::TANH)
+ {
+ float tmp_f = dequantize_qsymm16(in, qi_in.scale);
+ tmp_f = a_f32 * std::tanh(b_f32 * tmp_f);
+ tmp = quantize_qsymm16(tmp_f, qi_out);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("Unsupported activation function");
+ }
+ *(output_ptr + x) = tmp;
+ }
+ },
+ input, output);
+}
+
+Status NEActivationLayerKernelEx::validate(const ITensorInfo *input, const ITensorInfo *output,
+ const ActivationLayerInfo &act_info)
+{
+ ARM_COMPUTE_UNUSED(act_info);
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, act_info));
+ ARM_COMPUTE_RETURN_ON_ERROR(
+ validate_and_configure_window(input->clone().get(),
+ (output != nullptr) ? output->clone().get() : nullptr)
+ .first);
+
+ return Status{};
+}
+
+void NEActivationLayerKernelEx::run(const Window &window, const ThreadInfo &info)
+{
+ // Early exit on disabled activation
+ if (!_act_info.enabled())
+ {
+ return;
+ }
+
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
+ ARM_COMPUTE_ERROR_ON(_func == nullptr);
+
+ (this->*_func)(window);
+}