summaryrefslogtreecommitdiff
path: root/runtime/onert/frontend/nnapi/wrapper/OperationFactory.cc
diff options
context:
space:
mode:
authorChunseok Lee <chunseok.lee@samsung.com>2020-04-23 14:45:49 +0900
committerChunseok Lee <chunseok.lee@samsung.com>2020-04-23 14:45:49 +0900
commite2ef8438a24f7c56a0744eb579a6e293ee2fbf8e (patch)
tree44a1a7951d168dd4370e13593ed03f4bc6d920c5 /runtime/onert/frontend/nnapi/wrapper/OperationFactory.cc
parent302e6564a7a76109e1178207e44e45a58631c477 (diff)
downloadnnfw-e2ef8438a24f7c56a0744eb579a6e293ee2fbf8e.tar.gz
nnfw-e2ef8438a24f7c56a0744eb579a6e293ee2fbf8e.tar.bz2
nnfw-e2ef8438a24f7c56a0744eb579a6e293ee2fbf8e.zip
Imported Upstream version 1.4.0upstream/1.4.0submit/tizen/20200423.054851
Diffstat (limited to 'runtime/onert/frontend/nnapi/wrapper/OperationFactory.cc')
-rw-r--r--runtime/onert/frontend/nnapi/wrapper/OperationFactory.cc1899
1 files changed, 1899 insertions, 0 deletions
diff --git a/runtime/onert/frontend/nnapi/wrapper/OperationFactory.cc b/runtime/onert/frontend/nnapi/wrapper/OperationFactory.cc
new file mode 100644
index 000000000..10e7c0341
--- /dev/null
+++ b/runtime/onert/frontend/nnapi/wrapper/OperationFactory.cc
@@ -0,0 +1,1899 @@
+/*
+ * Copyright (c) 2019 Samsung Electronics Co., Ltd. All Rights Reserved
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "OperationFactory.h"
+#include "NNAPIConvert.h"
+
+#include <ir/Operations.Include.h>
+#include <string.h>
+
+namespace
+{
+using namespace onert::ir;
+
+void replaceDataType(Operands &operands, const OperandIndex &index, const DataType type)
+{
+ assert(operands.exist(index));
+ operands.at(index).type(type);
+}
+
+ExplicitPadding makeExplicitPadding(Operands &operands, const OperandIndex &left_index,
+ const OperandIndex &right_index, const OperandIndex &top_index,
+ const OperandIndex &bottom_index)
+{
+ auto left = operands.at(left_index).asScalar<int32_t>();
+ auto right = operands.at(right_index).asScalar<int32_t>();
+ auto top = operands.at(top_index).asScalar<int32_t>();
+ auto bottom = operands.at(bottom_index).asScalar<int32_t>();
+
+ if (left < 0 || right < 0 || top < 0 || bottom < 0)
+ {
+ throw std::runtime_error{"Cannot handle negative explicit padding value"};
+ }
+
+ ExplicitPadding param;
+ param.left = static_cast<uint32_t>(left);
+ param.right = static_cast<uint32_t>(right);
+ param.top = static_cast<uint32_t>(top);
+ param.bottom = static_cast<uint32_t>(bottom);
+
+ return param;
+}
+
+Stride makeStride(Operands &operands, const OperandIndex &horizontal_index,
+ const OperandIndex &vertical_index)
+{
+ auto horizontal = operands.at(horizontal_index).asScalar<int32_t>();
+ auto vertical = operands.at(vertical_index).asScalar<int32_t>();
+
+ if (vertical < 0 || horizontal < 0)
+ {
+ throw std::runtime_error{"Cannot handle negative stride value"};
+ }
+
+ Stride stride;
+ stride.horizontal = static_cast<uint32_t>(horizontal);
+ stride.vertical = static_cast<uint32_t>(vertical);
+
+ return stride;
+}
+
+uint32_t getUint32Scalar(Operands &operands, const OperandIndex index)
+{
+ auto int32_value = operands.at(index).asScalar<int32_t>();
+ if (int32_value < 0)
+ {
+ throw std::runtime_error{"Cannot handle negative value"};
+ }
+
+ return static_cast<uint32_t>(int32_value);
+}
+
+} // namespace
+
+OperationFactory &OperationFactory::get()
+{
+ static OperationFactory factory;
+ return factory;
+}
+
+OperationFactory::OperationFactory()
+{
+ _map[ANEURALNETWORKS_BATCH_TO_SPACE_ND] = [](const OperationFactory::Param &init_param,
+ Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Block size Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ return new operation::BatchToSpaceND{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_DEPTHWISE_CONV_2D] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert((init_param.input_count == 8 || init_param.input_count == 11) &&
+ init_param.output_count == 1);
+
+ // In common
+ // 0 -> IFM Tensor Index
+ // 1 -> Kernel Tensor Index
+ // 2 -> Bias Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1], init_param.inputs[2]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ operation::DepthwiseConv2D::Param param;
+ if (init_param.input_count == 8)
+ {
+ // Imlicit Padding case
+ // Each input should be interpreted as follows:
+ //
+ // 3 -> Padding Code (ANEURALNETWORKS_PADDING_SAME or ANEURALNETWORKS_PADDING_VALID) Index
+ // 4 -> Stride (width) Index
+ // 5 -> Stride (height) INdex
+ // 6 -> Depthwise multiplier
+ // 7 -> Activation Index
+
+ const auto padding_index = OperandIndex{init_param.inputs[3]};
+ const auto hstride_index = OperandIndex{init_param.inputs[4]};
+ const auto vstride_index = OperandIndex{init_param.inputs[5]};
+ const auto multiplier_index = OperandIndex{init_param.inputs[6]};
+ const auto activation_index = OperandIndex{init_param.inputs[7]};
+
+ param.padding.type =
+ NNAPIConvert::getPaddingType(operands.at(padding_index).asScalar<PaddingCode>());
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.multiplier = getUint32Scalar(operands, multiplier_index);
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+ else
+ {
+ // Explicit Padding case
+ // Each input should be interpreted as follows:
+ //
+ // 3 -> Padding On the Left
+ // 4 -> Padding On the Right
+ // 5 -> Padding On the Top
+ // 6 -> Padding On the Bottom
+ // 7 -> Stride (width) Index
+ // 8 -> Stride (height) Index
+ // 9 -> Depthwise multiplier
+ // 10-> Activation Index
+
+ const auto padding_left_index = OperandIndex{init_param.inputs[3]};
+ const auto padding_right_index = OperandIndex{init_param.inputs[4]};
+ const auto padding_top_index = OperandIndex{init_param.inputs[5]};
+ const auto padding_bottom_index = OperandIndex{init_param.inputs[6]};
+ const auto hstride_index = OperandIndex{init_param.inputs[7]};
+ const auto vstride_index = OperandIndex{init_param.inputs[8]};
+ const auto multiplier_index = OperandIndex{init_param.inputs[9]};
+ const auto activation_index = OperandIndex{init_param.inputs[10]};
+
+ param.padding.type = PaddingType::EXPLICIT;
+ param.padding.param = makeExplicitPadding(operands, padding_left_index, padding_right_index,
+ padding_top_index, padding_bottom_index);
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.multiplier = getUint32Scalar(operands, multiplier_index);
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+
+ return new operation::DepthwiseConv2D{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_MAX_POOL_2D] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 7 || init_param.input_count == 10);
+ assert(init_param.output_count == 1);
+
+ // In common
+ // 0 -> IFM Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ operation::MaxPool2D::Param param;
+ if (init_param.input_count == 7) // support implicit padding
+ {
+ // Each input should be interpreted as follows:
+ //
+ // 1 -> Padding Code (ANEURALNETWORKS_PADDING_SAME or ANEURALNETWORKS_PADDING_VALID) Index
+ // 2 -> Horizontal (over width) Stride Index
+ // 3 -> Vertial (over height) Stride Index
+ // 4 -> Filter Width Index
+ // 5 -> Filter Height Index
+ // 6 -> FuseCode (activation) Index
+
+ const auto padding_index = OperandIndex{init_param.inputs[1]};
+ const auto hstride_index = OperandIndex{init_param.inputs[2]};
+ const auto vstride_index = OperandIndex{init_param.inputs[3]};
+ const auto kw_index = OperandIndex{init_param.inputs[4]};
+ const auto kh_index = OperandIndex{init_param.inputs[5]};
+ const auto activation_index = OperandIndex{init_param.inputs[6]};
+
+ param.padding.type =
+ NNAPIConvert::getPaddingType(operands.at(padding_index).asScalar<PaddingCode>());
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.kw = getUint32Scalar(operands, kw_index);
+ param.kh = operands.at(kh_index).asScalar<uint32_t>();
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+ else if (init_param.input_count == 10) // support explicit padding
+ {
+ // Each input should be interpreted as follows:
+ //
+ // 1 -> Padding_left index
+ // 2 -> Padding_right index
+ // 3 -> Padding_top index
+ // 4 -> Padding_bottom index
+ // 5 -> Horizontal (over width) Stride Index
+ // 6 -> Vertial (over height) Stride Index
+ // 7 -> Filter Width Index
+ // 8 -> Filter Height Index
+ // 9 -> FuseCode (activation) Index
+
+ const auto padding_left_index = OperandIndex{init_param.inputs[1]};
+ const auto padding_right_index = OperandIndex{init_param.inputs[2]};
+ const auto padding_top_index = OperandIndex{init_param.inputs[3]};
+ const auto padding_bottom_index = OperandIndex{init_param.inputs[4]};
+ const auto hstride_index = OperandIndex{init_param.inputs[5]};
+ const auto vstride_index = OperandIndex{init_param.inputs[6]};
+ const auto kw_index = OperandIndex{init_param.inputs[7]};
+ const auto kh_index = OperandIndex{init_param.inputs[8]};
+ const auto activation_index = OperandIndex{init_param.inputs[9]};
+
+ param.padding.type = PaddingType::EXPLICIT;
+ param.padding.param = makeExplicitPadding(operands, padding_left_index, padding_right_index,
+ padding_top_index, padding_bottom_index);
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.kw = getUint32Scalar(operands, kw_index);
+ param.kh = getUint32Scalar(operands, kh_index);
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+ return new operation::MaxPool2D{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_AVERAGE_POOL_2D] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ // TODO We may reuse code here for MAX_POOL_2D. Seems like these two are identical
+ assert(init_param.input_count == 7 || init_param.input_count == 10);
+ assert(init_param.output_count == 1);
+
+ // In common
+ // 0 -> IFM Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ operation::AvgPool2D::Param param;
+ if (init_param.input_count == 7) // support implicit padding
+ {
+ // Each input should be interpreted as follows:
+ //
+ // 1 -> Padding Code (ANEURALNETWORKS_PADDING_SAME or ANEURALNETWORKS_PADDING_VALID) Index
+ // 2 -> Horizontal (over width) Stride Index
+ // 3 -> Vertial (over height) Stride Index
+ // 4 -> Filter Width Index
+ // 5 -> Filter Height Index
+ // 6 -> FuseCode (activation) Index
+
+ const auto padding_index = OperandIndex{init_param.inputs[1]};
+ const auto hstride_index = OperandIndex{init_param.inputs[2]};
+ const auto vstride_index = OperandIndex{init_param.inputs[3]};
+ const auto kw_index = OperandIndex{init_param.inputs[4]};
+ const auto kh_index = OperandIndex{init_param.inputs[5]};
+ const auto activation_index = OperandIndex{init_param.inputs[6]};
+
+ param.padding.type =
+ NNAPIConvert::getPaddingType(operands.at(padding_index).asScalar<PaddingCode>());
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.kw = getUint32Scalar(operands, kw_index);
+ param.kh = getUint32Scalar(operands, kh_index);
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+ else if (init_param.input_count == 10) // support explicit padding
+ {
+ // Each input should be interpreted as follows:
+ //
+ // 1 -> Padding_left index
+ // 2 -> Padding_right index
+ // 3 -> Padding_top index
+ // 4 -> Padding_bottom index
+ // 5 -> Horizontal (over width) Stride Index
+ // 6 -> Vertial (over height) Stride Index
+ // 7 -> Filter Width Index
+ // 8 -> Filter Height Index
+ // 9 -> FuseCode (activation) Index
+
+ const auto padding_left_index = OperandIndex{init_param.inputs[1]};
+ const auto padding_right_index = OperandIndex{init_param.inputs[2]};
+ const auto padding_top_index = OperandIndex{init_param.inputs[3]};
+ const auto padding_bottom_index = OperandIndex{init_param.inputs[4]};
+ const auto hstride_index = OperandIndex{init_param.inputs[5]};
+ const auto vstride_index = OperandIndex{init_param.inputs[6]};
+ const auto kw_index = OperandIndex{init_param.inputs[7]};
+ const auto kh_index = OperandIndex{init_param.inputs[8]};
+ const auto activation_index = OperandIndex{init_param.inputs[9]};
+
+ param.padding.type = PaddingType::EXPLICIT;
+ param.padding.param = makeExplicitPadding(operands, padding_left_index, padding_right_index,
+ padding_top_index, padding_bottom_index);
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.kw = getUint32Scalar(operands, kw_index);
+ param.kh = getUint32Scalar(operands, kh_index);
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+
+ return new operation::AvgPool2D{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_CONCATENATION] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count >= 2); // At least one one input tensor and axis
+ assert(init_param.output_count == 1);
+
+ // When there are N + 1 inputs, each input should be interpreted as follows:
+ //
+ // [0, N) -> Input tensors
+ // N -> Axis
+ //
+
+ OperandIndexSequence inputs;
+ for (uint32_t n = 0; n < init_param.input_count - 1; ++n)
+ {
+ inputs.append(OperandIndex{init_param.inputs[n]});
+ }
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ operation::Concat::Param param;
+ const OperandIndex axis_index{init_param.inputs[init_param.input_count - 1]};
+ param.axis = operands.at(axis_index).asScalar<int32_t>();
+ param.rank = operands.at(outputs.at(0)).shape().rank();
+
+ return new operation::Concat{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_RESHAPE] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> A tensor, specifying the tensor to be reshaped.
+ // 1 -> A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32, defining the shape of the output
+ // tensor
+
+ // TODO Second input should be shape tensor (init_param.inputs[1])
+ // Currently unused since assume that it is same with output tensor size
+ OperandIndexSequence inputs{init_param.inputs[0] /* , init_param.inputs[1] */};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ return new operation::Reshape{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_FULLY_CONNECTED] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 4 && init_param.output_count == 1);
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> A tensor, specifying the input.
+ // 1 -> A 2-D tensor, specifying the weights
+ // 2 -> A 1-D tensor, specifying the bias
+ // 3 -> An INT32 value, and has to be one of the FuseCode values
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1], init_param.inputs[2]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ operation::FullyConnected::Param param;
+ const auto activation_index = OperandIndex{init_param.inputs[3]};
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+
+ return new operation::FullyConnected{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_SOFTMAX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> A 2-D or 4-D tensor, specifying the tensor to be reshaped.
+ // 1 -> FLOAT32 value, specifying the positive scaling factor for the exponent, beta.
+
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ const auto beta_index = OperandIndex{init_param.inputs[1]};
+
+ operation::Softmax::Param param;
+ param.beta = operands.at(beta_index).asScalar<float>();
+
+ return new operation::Softmax{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_CAST] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ // 0 -> input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ // NNAPI uses QUANT8_ASYMM to represent UINT8 type for ANEURALNETWORKS_CAST's input/output
+ if (operands.at(inputs.at(0)).typeInfo().type() == DataType::QUANT8_ASYMM)
+ {
+ replaceDataType(operands, inputs.at(0), DataType::UINT8);
+ }
+ if (operands.at(outputs.at(0)).typeInfo().type() == DataType::QUANT8_ASYMM)
+ {
+ replaceDataType(operands, outputs.at(0), DataType::UINT8);
+ }
+
+ return new operation::Cast{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_CAST_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_CAST_EX
+ _map[ANEURALNETWORKS_CAST_EX] = _map[ANEURALNETWORKS_CAST];
+
+ _map[ANEURALNETWORKS_CONV_2D] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ using operation::Conv2D;
+
+ // inputCount is either 7 or 10 acccording to NN API specification.
+ // - Padding is implicit when inputCount is 7
+ // - Padding is explicit when inputCount is 10
+ assert(init_param.input_count == 7 || init_param.input_count == 10);
+ assert(init_param.output_count == 1);
+
+ // 0 -> IFM Tensor Index
+ // 1 -> Kernel Tensor Index
+ // 2 -> Bias Tensor Index
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1], init_param.inputs[2]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ Conv2D::Param param;
+
+ if (init_param.input_count == 7) // support implicit padding
+ {
+ // Each input should be interpreted as follows:
+ //
+ // 3 -> Padding Code (ANEURALNETWORKS_PADDING_SAME or ANEURALNETWORKS_PADDING_VALID) Index
+ // 4 -> Stride (width) Index
+ // 5 -> Stride (height) INdex
+ // 6 -> Activation Index
+
+ const auto padding_index = OperandIndex{init_param.inputs[3]};
+ const auto hstride_index = OperandIndex{init_param.inputs[4]};
+ const auto vstride_index = OperandIndex{init_param.inputs[5]};
+ const auto activation_index = OperandIndex{init_param.inputs[6]};
+
+ param.padding.type =
+ NNAPIConvert::getPaddingType(operands.at(padding_index).asScalar<PaddingCode>());
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+ else if (init_param.input_count == 10) // support explicit padding
+ {
+ // Each input should be interpreted as follows:
+ //
+ // 3 -> Padding_left index
+ // 4 -> Padding_right index
+ // 5 -> Padding_top index
+ // 6 -> Padding_bottom index
+ // 7 -> Stride (width) Index
+ // 8 -> Stride (height) INdex
+ // 9 -> Activation Index
+
+ const auto padding_left_index = OperandIndex{init_param.inputs[3]};
+ const auto padding_right_index = OperandIndex{init_param.inputs[4]};
+ const auto padding_top_index = OperandIndex{init_param.inputs[5]};
+ const auto padding_bottom_index = OperandIndex{init_param.inputs[6]};
+ const auto hstride_index = OperandIndex{init_param.inputs[7]};
+ const auto vstride_index = OperandIndex{init_param.inputs[8]};
+ const auto activation_index = OperandIndex{init_param.inputs[9]};
+
+ param.padding.type = PaddingType::EXPLICIT;
+ param.padding.param = makeExplicitPadding(operands, padding_left_index, padding_right_index,
+ padding_top_index, padding_bottom_index);
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+
+ return new Conv2D{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_ADD] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 3);
+ assert(init_param.output_count == 1);
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Lefthand side operand
+ // 1 -> Righthand side operand
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ operation::Add::Param param;
+
+ const auto activation_index = OperandIndex{init_param.inputs[2]};
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+
+ return new operation::Add{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_REDUCE_SUM] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 3);
+ assert(init_param.output_count == 1);
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Reduced Axes Tensor Index
+ // 2 -> keep_dims Index
+
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+ std::vector<std::int32_t> axes =
+ operands.at(OperandIndex{init_param.inputs[1]}).asVector<std::int32_t>();
+
+ operation::ReduceSum::Param param;
+ param.axes.assign(axes.cbegin(), axes.cend());
+ param.keep_dims = operands.at(OperandIndex{init_param.inputs[2]}).asScalar<int8_t>() != 0;
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::ReduceSum{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_REDUCE_SUM_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_REDUCE_SUM_EX
+ _map[ANEURALNETWORKS_REDUCE_SUM_EX] = _map[ANEURALNETWORKS_REDUCE_SUM];
+
+ _map[ANEURALNETWORKS_SUB] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 3);
+ assert(init_param.output_count == 1);
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Lefthand side operand
+ // 1 -> Righthand side operand
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ operation::Sub::Param param;
+
+ const auto activation_index = OperandIndex{init_param.inputs[2]};
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+
+ return new operation::Sub{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_SLICE] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Begins Tensor Index
+ // 2 -> Sizes Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1], init_param.inputs[2]};
+
+ operation::Slice::Param param;
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::Slice{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_STRIDED_SLICE] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 7 && init_param.output_count == 1);
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1], init_param.inputs[2],
+ init_param.inputs[3]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 1 -> A 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the starts of
+ // the dimensions of the input tensor to be sliced. The length must be
+ // of rank(input0).
+ // 2 -> A 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the ends of
+ // the dimensions of the input tensor to be sliced. The length must be
+ // of rank(input0).
+ // 3 -> A 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the strides of
+ // the dimensions of the input tensor to be sliced. The length must be
+ // of rank(input0).
+ // 4 -> An {@link ANEURALNETWORKS_INT32} scalar, begin_mask. If the ith bit
+ // of begin_mask is set, begin[i] is ignored and the fullest possible
+ // range in that dimension is used instead.
+ // 5 -> An {@link ANEURALNETWORKS_INT32} scalar, end_mask. If the ith bit of
+ // end_mask is set, end[i] is ignored and the fullest possible range in
+ // that dimension is used instead.
+ // 6 -> An {@link ANEURALNETWORKS_INT32} scalar, shrink_axis_mask. An int32
+ // mask. If the ith bit of shrink_axis_mask is set, it implies that the
+ // ith specification shrinks the dimensionality by 1. A slice of size 1
+ // starting from begin[i] in the dimension must be preserved.
+
+ operation::StridedSlice::Param param;
+
+ param.begin_mask = operands.at(OperandIndex{init_param.inputs[4]}).asScalar<std::int32_t>();
+ param.end_mask = operands.at(OperandIndex{init_param.inputs[5]}).asScalar<std::int32_t>();
+ param.shrink_axis_mask =
+ operands.at(OperandIndex{init_param.inputs[6]}).asScalar<std::int32_t>();
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::StridedSlice{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_TRANSPOSE] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ // TODO make this work with init_param.input_count == 1 (when permutation vector is optional)
+
+ // Inputs
+ // 0: An n-D tensor, specifying the tensor to be transposed.
+ // 1: An optional 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32},
+ // the permutation of the dimensions of the input tensor.
+ // The returned tensor's dimension i corresponds to the input dimension
+ // perm[i]. If perm is not given, it is set to (n-1...0), where n is the
+ // rank of the input tensor. Hence by default, this operation performs a
+ // regular matrix transpose on 2-D input Tensors.
+ assert(init_param.input_count == 2);
+ assert(init_param.output_count == 1);
+
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+ std::vector<std::int32_t> perm =
+ operands.at(OperandIndex{init_param.inputs[1]}).asVector<std::int32_t>();
+
+ operation::Transpose::Param param;
+ param.perm.assign(perm.cbegin(), perm.cend());
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::Transpose{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_MUL] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> LHS Tensor Index
+ // 1 -> RHS Tensor Index
+ // 2 -> Activation Index
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Mul::Param param;
+
+ const auto activation_index = OperandIndex{init_param.inputs[2]};
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+
+ return new operation::Mul{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_SQUEEZE] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 1 || init_param.input_count == 2);
+ assert(init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> An n-D tensor, the tensor to be squeezed.
+ // 1 -> An optional 1-D tensor of ANEURALNETWORKS_TENSOR_INT32. The dimensions to squeeze.
+ // If specified only squeezes the dimensions listed. Otherwise, squeezes all dimensions.
+ // The dimension index starts at 0. An error must be reported if squeezing a dimension that
+ // is not 1.
+
+ // Add mandatory input index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ // Add dims index if specified
+ operation::Squeeze::Param param{};
+ if (init_param.input_count == 2)
+ {
+ auto squeeze_dims_idx = OperandIndex{init_param.inputs[1]};
+ assert(operands.at(squeeze_dims_idx).shape().rank() == 1);
+ assert(operands.at(squeeze_dims_idx).shape().dim(0) >= 0);
+ assert(static_cast<uint32_t>(operands.at(squeeze_dims_idx).shape().dim(0)) <=
+ sizeof(param.dims));
+ param.ndim = operands.at(squeeze_dims_idx).shape().dim(0);
+ if (param.ndim > 0)
+ {
+ assert(operands.at(squeeze_dims_idx).data());
+ memcpy(param.dims, operands.at(squeeze_dims_idx).data()->base(),
+ param.ndim * sizeof(param.dims[0]));
+ }
+ }
+
+ return new operation::Squeeze{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_TANH] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::Tanh{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_LOGISTIC] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::Logistic{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_DIV] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> LHS Tensor Index
+ // 1 -> RHS Tensor Index
+ // 2 -> Activation Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Div::Param param;
+
+ const auto activation_index = OperandIndex{init_param.inputs[2]};
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+
+ return new operation::Div{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_EXP] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::Exp{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_EXP_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_EXP_EX
+ _map[ANEURALNETWORKS_EXP_EX] = _map[ANEURALNETWORKS_EXP];
+
+ _map[ANEURALNETWORKS_GREATER] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::Greater;
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_GREATER_EQUAL] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::GreaterEqual;
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_GREATER_EQUAL_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_GREATER_EQUAL_EX
+ _map[ANEURALNETWORKS_GREATER_EQUAL_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::GreaterEqual;
+
+ // Output operand type must be boolean
+ replaceDataType(operands, outputs.at(0), DataType::BOOL8);
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_LESS] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::Less;
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_LESS_EQUAL] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::LessEqual;
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_LESS_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_LESS_EX
+ _map[ANEURALNETWORKS_LESS_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::Less;
+
+ // Output operand type must be boolean
+ replaceDataType(operands, outputs.at(0), DataType::BOOL8);
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_REDUCE_MAX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Axis Tensor Index
+ // 2 -> keep_dims Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ std::vector<std::int32_t> axes =
+ operands.at(OperandIndex{init_param.inputs[1]}).asVector<std::int32_t>();
+
+ operation::ReduceMax::Param param;
+ param.axes.assign(axes.cbegin(), axes.cend());
+ param.keep_dims = operands.at(OperandIndex{init_param.inputs[2]}).asScalar<int8_t>() != 0;
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::ReduceMax{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_REDUCE_MAX_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_REDUCE_MAX_EX
+ _map[ANEURALNETWORKS_REDUCE_MAX_EX] = _map[ANEURALNETWORKS_REDUCE_MAX];
+
+ _map[ANEURALNETWORKS_NOT_EQUAL] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input1 Tensor Index
+ // 1 -> input2 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::NotEqual;
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_NOT_EQUAL_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_NOT_EQUAL_EX
+ _map[ANEURALNETWORKS_NOT_EQUAL_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input1 Tensor Index
+ // 1 -> input2 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::NotEqual;
+
+ // Output operand type must be boolean
+ replaceDataType(operands, outputs.at(0), DataType::BOOL8);
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_LOGICAL_AND] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ return new operation::LogicalAnd{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_LOGICAL_AND_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_LOGICAL_AND_EX
+ _map[ANEURALNETWORKS_LOGICAL_AND_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ // This operation's operands must be boolean type.
+ replaceDataType(operands, inputs.at(0), DataType::BOOL8);
+ replaceDataType(operands, inputs.at(1), DataType::BOOL8);
+ replaceDataType(operands, outputs.at(0), DataType::BOOL8);
+
+ return new operation::LogicalAnd{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_RSQRT] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::RSQRT{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_RSQRT_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_RSQRT_EX
+ _map[ANEURALNETWORKS_RSQRT_EX] = _map[ANEURALNETWORKS_RSQRT];
+
+ _map[ANEURALNETWORKS_RELU] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::ReLU{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_RESIZE_BILINEAR] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> IFM Index
+ // 1 -> Height Index
+ // 2 -> Width Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ operation::ResizeBilinear::Param param;
+ param.height_out = operands.at(OperandIndex{init_param.inputs[1]}).asScalar<int32_t>();
+ param.width_out = operands.at(OperandIndex{init_param.inputs[2]}).asScalar<int32_t>();
+
+ return new operation::ResizeBilinear{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_RELU1] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::ReLU1{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_RELU6] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::ReLU6{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_RNN] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 6 && init_param.output_count == 2);
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Weights Tensor Index
+ // 2 -> Recurrent Weights Tensor Index
+ // 3 -> Bias Tensor Index
+ // 4 -> Hidden state (in) Index
+ // 5 -> Activation Index
+
+ OperandIndexSequence inputs;
+ for (uint32_t n = 0; n < init_param.input_count - 1; ++n)
+ {
+ inputs.append(OperandIndex{init_param.inputs[n]});
+ }
+ OperandIndexSequence outputs;
+ for (uint32_t n = 0; n < init_param.output_count; ++n)
+ {
+ outputs.append(OperandIndex{init_param.outputs[n]});
+ }
+
+ operation::RNN::Param param;
+ const auto activation_index = OperandIndex{init_param.inputs[5]};
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+
+ return new operation::RNN{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_FLOOR] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ // 0 -> input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::Floor{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_SPACE_TO_BATCH_ND] = [](const OperationFactory::Param &init_param,
+ Operands &) {
+ assert(init_param.input_count == 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Block size Index
+ // 2 -> Paddings Index
+ OperandIndexSequence inputs;
+ for (uint32_t n = 0; n < init_param.input_count; ++n)
+ {
+ inputs.append(OperandIndex{init_param.inputs[n]});
+ }
+
+ return new operation::SpaceToBatchND{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_SPACE_TO_DEPTH] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Block size Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ operation::SpaceToDepth::Param param;
+ param.block_size = operands.at(OperandIndex{init_param.inputs[1]}).asScalar<std::int32_t>();
+
+ return new operation::SpaceToDepth{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_L2_POOL_2D] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 10 || init_param.input_count == 7);
+ assert(init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> IFM Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ operation::L2Pool2D::Param param;
+
+ if (init_param.input_count == 7) // Imlicit Padding case
+ {
+ // 1 -> Padding Code (ANEURALNETWORKS_PADDING_SAME or ANEURALNETWORKS_PADDING_VALID) Index
+ // 2 -> Horizontal (over width) Stride Index
+ // 3 -> Vertial (over height) Stride Index
+ // 4 -> Filter Width Index
+ // 5 -> Filter Height Index
+ // 6 -> FuseCode (activation) Index
+ const auto padding_index = OperandIndex{init_param.inputs[1]};
+ const auto hstride_index = OperandIndex{init_param.inputs[2]};
+ const auto vstride_index = OperandIndex{init_param.inputs[3]};
+ const auto kw_index = OperandIndex{init_param.inputs[4]};
+ const auto kh_index = OperandIndex{init_param.inputs[5]};
+ const auto activation_index = OperandIndex{init_param.inputs[6]};
+
+ param.padding.type =
+ NNAPIConvert::getPaddingType(operands.at(padding_index).asScalar<PaddingCode>());
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.kw = getUint32Scalar(operands, kw_index);
+ param.kh = getUint32Scalar(operands, kh_index);
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+ else // Explicit Padding case
+ {
+ // 1 -> Padding_left index
+ // 2 -> Padding_right index
+ // 3 -> Padding_top index
+ // 4 -> Padding_bottom index
+ // 5 -> Horizontal (over width) Stride Index
+ // 6 -> Vertial (over height) Stride Index
+ // 7 -> Filter Width Index
+ // 8 -> Filter Height Index
+ // 9 -> FuseCode (activation) Index
+ const auto padding_left_index = OperandIndex{init_param.inputs[1]};
+ const auto padding_right_index = OperandIndex{init_param.inputs[2]};
+ const auto padding_top_index = OperandIndex{init_param.inputs[3]};
+ const auto padding_bottom_index = OperandIndex{init_param.inputs[4]};
+ const auto hstride_index = OperandIndex{init_param.inputs[5]};
+ const auto vstride_index = OperandIndex{init_param.inputs[6]};
+ const auto kw_index = OperandIndex{init_param.inputs[7]};
+ const auto kh_index = OperandIndex{init_param.inputs[8]};
+ const auto activation_index = OperandIndex{init_param.inputs[9]};
+
+ param.padding.type = PaddingType::EXPLICIT;
+ param.padding.param = makeExplicitPadding(operands, padding_left_index, padding_right_index,
+ padding_top_index, padding_bottom_index);
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+ param.kw = getUint32Scalar(operands, kw_index);
+ param.kh = getUint32Scalar(operands, kh_index);
+ param.activation =
+ NNAPIConvert::getFusedActivation(operands.at(activation_index).asScalar<FuseCode>());
+ }
+
+ return new operation::L2Pool2D{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_EMBEDDING_LOOKUP] = [](const OperationFactory::Param &init_param,
+ Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Lookups Index
+ // 1 -> Values Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ return new operation::EmbeddingLookup{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_L2_NORMALIZATION] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ // 0 -> input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ operation::L2Normalization::Param param;
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::L2Normalization{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_HASHTABLE_LOOKUP] = [](const OperationFactory::Param &init_param,
+ Operands &) {
+ assert(init_param.input_count == 3 && init_param.output_count == 2);
+
+ // Each output should be interpreted as follows:
+ //
+ // 0 -> Output Index
+ // 1 -> Hits Index
+ OperandIndexSequence outputs{init_param.outputs[0], init_param.outputs[1]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Lookups Index
+ // 1 -> Keys Index
+ // 2 -> Values Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1], init_param.inputs[2]};
+
+ return new operation::HashtableLookup{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_PRELU] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input Tensor Index
+ // 1 -> alpha Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ return new operation::PReLU{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_PRELU_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_PRELU_EX
+ _map[ANEURALNETWORKS_PRELU_EX] = _map[ANEURALNETWORKS_PRELU];
+
+ _map[ANEURALNETWORKS_TRANSPOSE_CONV_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 6 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Output Shape Index
+ // 1 -> Weights Index
+ // 2 -> Input Tensor Index
+ // 3 -> Padding Type
+ // 4 -> Stride width
+ // 5 -> Stride height
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1], init_param.inputs[2]};
+
+ operation::TransposeConv::Param param;
+
+ const auto padding_index = OperandIndex{init_param.inputs[3]};
+ const auto hstride_index = OperandIndex{init_param.inputs[4]};
+ const auto vstride_index = OperandIndex{init_param.inputs[5]};
+
+ param.padding.type =
+ NNAPIConvert::getPaddingType(operands.at(padding_index).asScalar<PaddingCode>());
+ param.stride = makeStride(operands, hstride_index, vstride_index);
+
+ return new operation::TransposeConv{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_SQRT] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ // 0 -> input Tensor Index
+
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ return new operation::SQRT{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_SQRT_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_SQRT_EX
+ _map[ANEURALNETWORKS_SQRT_EX] = _map[ANEURALNETWORKS_SQRT];
+
+ _map[ANEURALNETWORKS_LOGICAL_OR] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ return new operation::LogicalOr{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_LOGICAL_OR_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_LOGICAL_OR_EX
+ _map[ANEURALNETWORKS_LOGICAL_OR_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ // This operation's operands must be boolean type.
+ replaceDataType(operands, inputs.at(0), DataType::BOOL8);
+ replaceDataType(operands, inputs.at(1), DataType::BOOL8);
+ replaceDataType(operands, outputs.at(0), DataType::BOOL8);
+
+ return new operation::LogicalOr{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_LOGICAL_NOT] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::LogicalNot{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_LOGICAL_NOT_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_LOGICAL_NOT_EX
+ _map[ANEURALNETWORKS_LOGICAL_NOT_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ // This operation's operands must be boolean type.
+ replaceDataType(operands, inputs.at(0), DataType::BOOL8);
+ replaceDataType(operands, outputs.at(0), DataType::BOOL8);
+
+ return new operation::LogicalNot{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_LSTM] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 23 && init_param.output_count == 4);
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Input to Input Tensor Index
+ // 2 -> Input to Forget Tensor Index
+ // 3 -> Input to Cell Tensor Index
+ // 4 -> Input to Output Tensor Index
+ // 5 -> Recurrent to Input Weights Tensor Index
+ // 6 -> Recurrent to Forget Weights Tensor Index
+ // 7 -> Recurrent to Cell Weights Tensor Index
+ // 8 -> Recurrent to Output Weights Tensor Index
+ // 9 -> Cell to Input Weights Tensor Index
+ // 10 -> Cell to Forget Weights Tensor Index
+ // 11 -> Cell to Output Weights Tensor Index
+ // 12 -> Input Gate Bias Tensor Index
+ // 13 -> Forget Gate Bias Tensor Index
+ // 14 -> Cell Bias Tensor Index
+ // 15 -> Output Gate Bias Tensor Index
+ // 16 -> Projection Weights Tensor Index
+ // 17 -> Projection Bias Tensor Index
+ // 18 -> Output State In Tensor Index
+ // 19 -> Cell State In Tensor Index
+ OperandIndexSequence inputs;
+ for (uint32_t n = 0; n < init_param.input_count - 3; ++n)
+ {
+ inputs.append(OperandIndex{init_param.inputs[n]});
+ }
+
+ // Each output should be interpreted as follows:
+ //
+ // 0 -> Scratch Buffer Tensor Index
+ // 1 -> Output State Out Tensor Index
+ // 2 -> Cell State Out Tensor Index
+ // 3 -> Output Tensor Index
+ OperandIndexSequence outputs;
+ for (uint32_t n = 0; n < init_param.output_count; ++n)
+ {
+ outputs.append(OperandIndex{init_param.outputs[n]});
+ }
+
+ operation::LSTM::Param param;
+ const auto activation_index = OperandIndex{init_param.inputs[20]};
+ switch (operands.at(activation_index).asScalar<int32_t>())
+ {
+ case 0:
+ param.activation = Activation::NONE;
+ break;
+ case 1:
+ param.activation = Activation::RELU;
+ break;
+ case 2:
+ param.activation = Activation::RELU1;
+ break;
+ case 3:
+ param.activation = Activation::RELU6;
+ break;
+ case 4:
+ param.activation = Activation::TANH;
+ break;
+ case 6:
+ param.activation = Activation::SIGMOID;
+ break;
+ default:
+ throw std::runtime_error("Unsupported activation type");
+ break;
+ }
+ param.cell_threshold = operands.at(OperandIndex{init_param.inputs[21]}).asScalar<float>();
+ param.projection_threshold = operands.at(OperandIndex{init_param.inputs[22]}).asScalar<float>();
+
+ return new operation::LSTM{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_EQUAL] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::Equal;
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_EQUAL_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_EQUAL_EX
+ _map[ANEURALNETWORKS_EQUAL_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input0 Tensor Index
+ // 1 -> input1 Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ operation::Comparison::Param param;
+ param.comparison_type = operation::Comparison::ComparisonType::Equal;
+
+ // Output operand type must be boolean
+ replaceDataType(operands, outputs.at(0), DataType::BOOL8);
+
+ return new operation::Comparison{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_SQUARED_DIFFERENCE_EX] = [](const OperationFactory::Param &init_param,
+ Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> LHS Tensor Index
+ // 1 -> RHS Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+
+ return new operation::SquaredDifference{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_TOPK_V2] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 2);
+
+ // Each output should be interpreted as follows:
+ //
+ // 0 -> Index for Output Values
+ // 1 -> Index for Output Indices
+ OperandIndexSequence outputs{init_param.outputs[0], init_param.outputs[1]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Index for Input Data
+ // 1 -> Index for K
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ operation::TopKV2::Param param;
+ param.k = operands.at(OperandIndex{init_param.inputs[1]}).asScalar<std::int32_t>();
+
+ return new operation::TopKV2{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_CAST_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_CAST_EX
+ _map[ANEURALNETWORKS_TOPK_V2_EX] = _map[ANEURALNETWORKS_TOPK_V2];
+
+ _map[ANEURALNETWORKS_GATHER] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> input Tensor Index
+ // 1 -> axis Index
+ // 2 -> indices Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[2]};
+
+ operation::Gather::Param param;
+ param.axis = operands.at(OperandIndex{init_param.inputs[1]}).asScalar<int32_t>();
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::Gather{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_GATHER_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_GATHER_EX
+ _map[ANEURALNETWORKS_GATHER_EX] = _map[ANEURALNETWORKS_GATHER];
+
+ _map[ANEURALNETWORKS_NEG] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::Neg{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_NEG_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_NEG_EX
+ _map[ANEURALNETWORKS_NEG_EX] = _map[ANEURALNETWORKS_NEG];
+
+ _map[ANEURALNETWORKS_ABS] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::Abs{inputs, outputs};
+ };
+
+ // ANEURALNETWORKS_ABS_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_ABS_EX
+ _map[ANEURALNETWORKS_ABS_EX] = _map[ANEURALNETWORKS_ABS];
+
+ _map[ANEURALNETWORKS_ARGMAX] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Axis Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ operation::ArgMax::Param param;
+ param.axis = operands.at(OperandIndex{init_param.inputs[1]}).asScalar<std::int32_t>();
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::ArgMax{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_ARGMAX_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_ARGMAX_EX
+ _map[ANEURALNETWORKS_ARGMAX_EX] = _map[ANEURALNETWORKS_ARGMAX];
+
+ _map[ANEURALNETWORKS_DEQUANTIZE] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ return new operation::Dequantize{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_MEAN] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> ifm Tensor Index
+ // 1 -> axis Tensor Index
+ // 2 -> keep_dims Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ std::vector<std::int32_t> axes =
+ operands.at(OperandIndex{init_param.inputs[1]}).asVector<std::int32_t>();
+
+ operation::Mean::Param param;
+ param.axes.assign(axes.cbegin(), axes.cend());
+ param.keep_dims = operands.at(OperandIndex{init_param.inputs[2]}).asScalar<int32_t>() != 0;
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::Mean{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 5 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ operation::LocalResponseNormalization::Param param;
+ param.radius = operands.at(OperandIndex{init_param.inputs[1]}).asScalar<std::int32_t>();
+ param.bias = operands.at(OperandIndex{init_param.inputs[2]}).asScalar<float>();
+ param.alpha = operands.at(OperandIndex{init_param.inputs[3]}).asScalar<float>();
+ param.beta = operands.at(OperandIndex{init_param.inputs[4]}).asScalar<float>();
+
+ return new operation::LocalResponseNormalization{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_DEPTH_TO_SPACE] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Block size Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+
+ operation::DepthToSpace::Param param;
+ param.block_size = operands.at(OperandIndex{init_param.inputs[1]}).asScalar<std::int32_t>();
+
+ return new operation::DepthToSpace{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_PACK_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count >= 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+ OperandIndexSequence inputs;
+ for (uint32_t n = 0; n < init_param.input_count - 2; ++n)
+ {
+ inputs.append(OperandIndex{init_param.inputs[n]});
+ }
+
+ operation::Pack::Param param;
+ const auto num_index = OperandIndex{init_param.inputs[init_param.input_count - 2]};
+ const auto axis_index = OperandIndex{init_param.inputs[init_param.input_count - 1]};
+ param.num = operands.at(num_index).asScalar<int32_t>();
+ param.axis = operands.at(axis_index).asScalar<int32_t>();
+ param.rank = operands.at(outputs.at(0)).shape().rank();
+
+ return new operation::Pack{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_REDUCE_MIN] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 3 && init_param.output_count == 1);
+
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> Input Tensor Index
+ // 1 -> Axis Tensor Index
+ // 2 -> keep_dims Index
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ std::vector<std::int32_t> axes =
+ operands.at(OperandIndex{init_param.inputs[1]}).asVector<std::int32_t>();
+
+ operation::ReduceMin::Param param;
+ param.axes.assign(axes.cbegin(), axes.cend());
+ param.keep_dims = operands.at(OperandIndex{init_param.inputs[2]}).asScalar<int8_t>() != 0;
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::ReduceMin{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_REDUCE_MIN_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_REDUCE_MIN_EX
+ _map[ANEURALNETWORKS_REDUCE_MIN_EX] = _map[ANEURALNETWORKS_REDUCE_MIN];
+
+ _map[ANEURALNETWORKS_SPLIT] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 3);
+ assert(init_param.output_count >= 1); // At least one output tensor and axis
+
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs;
+ for (uint32_t n = 0; n < init_param.output_count; ++n)
+ {
+ outputs.append(OperandIndex{init_param.outputs[n]});
+ }
+
+ operation::Split::Param param;
+ param.axis = operands.at(OperandIndex{init_param.inputs[1]}).asScalar<std::int32_t>();
+ param.num_splits = operands.at(OperandIndex{init_param.inputs[2]}).asScalar<std::int32_t>();
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::Split{inputs, outputs, param};
+ };
+
+ // ANEURALNETWORKS_SPLIT_EX is deprecated
+ // TODO Remove ANEURALNETWORKS_SPLIT_EX
+ _map[ANEURALNETWORKS_SPLIT_EX] = _map[ANEURALNETWORKS_SPLIT];
+
+ _map[ANEURALNETWORKS_UNPACK_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 3 && init_param.output_count >= 1);
+
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs;
+ for (uint32_t n = 0; n < init_param.output_count; ++n)
+ {
+ outputs.append(OperandIndex{init_param.outputs[n]});
+ }
+
+ operation::Unpack::Param param;
+ const auto num_index = OperandIndex{init_param.inputs[1]};
+ const auto axis_index = OperandIndex{init_param.inputs[2]};
+ param.num = operands.at(num_index).asScalar<int32_t>();
+ param.axis = operands.at(axis_index).asScalar<int32_t>();
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::Unpack{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_PAD] = [](const OperationFactory::Param &init_param, Operands &operands) {
+ assert(init_param.input_count == 2 && init_param.output_count >= 1);
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ operation::Pad::Param param;
+ param.rank = operands.at(inputs.at(0)).shape().rank();
+
+ return new operation::Pad{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_MINIMUM] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ return new operation::Min{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_MAXIMUM] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 2 && init_param.output_count == 1);
+
+ OperandIndexSequence inputs{init_param.inputs[0], init_param.inputs[1]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ return new operation::Max{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_ONE_HOT_EX] = [](const OperationFactory::Param &init_param,
+ Operands &operands) {
+ assert(init_param.input_count == 5);
+ assert(init_param.output_count == 1);
+ // Each input should be interpreted as follows:
+ //
+ // 0 -> indices tensor
+ // 1 -> depth scalar
+ // 2 -> on_value scalar
+ // 3 -> off_value scalar
+ // 4 -> axis scalar
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ operation::OneHot::Param param;
+ param.depth = operands.at(OperandIndex{init_param.inputs[1]}).asScalar<std::int32_t>();
+ param.on_value = operands.at(OperandIndex{init_param.inputs[2]}).asScalar<float>();
+ param.off_value = operands.at(OperandIndex{init_param.inputs[3]}).asScalar<float>();
+ param.axis = operands.at(OperandIndex{init_param.inputs[4]}).asScalar<std::int32_t>();
+
+ return new operation::OneHot{inputs, outputs, param};
+ };
+
+ _map[ANEURALNETWORKS_SIN] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ return new operation::Sin{inputs, outputs};
+ };
+
+ _map[ANEURALNETWORKS_SHAPE_EX] = [](const OperationFactory::Param &init_param, Operands &) {
+ assert(init_param.input_count == 1 && init_param.output_count == 1);
+
+ OperandIndexSequence inputs{init_param.inputs[0]};
+ OperandIndexSequence outputs{init_param.outputs[0]};
+
+ return new operation::Shape{inputs, outputs};
+ };
+}
+
+Operation *OperationFactory::create(ANeuralNetworksOperationType type,
+ const OperationFactory::Param &param, Operands &operands)
+{
+ auto it = _map.find(type);
+ if (it == _map.end())
+ {
+ throw std::runtime_error("Unsupported operation type: " + std::to_string(type));
+ }
+ return it->second(param, operands);
+}