summaryrefslogtreecommitdiff
path: root/src/cairo-bentley-ottmann-rectangular.c
blob: 5541bdc3a2d15569d5995fc97b929ea8d881ed3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
/*
 * Copyright © 2004 Carl Worth
 * Copyright © 2006 Red Hat, Inc.
 * Copyright © 2009 Chris Wilson
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is Carl Worth
 *
 * Contributor(s):
 *	Carl D. Worth <cworth@cworth.org>
 *	Chris Wilson <chris@chris-wilson.co.uk>
 */

/* Provide definitions for standalone compilation */
#include "cairoint.h"

#include "cairo-boxes-private.h"
#include "cairo-error-private.h"
#include "cairo-combsort-inline.h"
#include "cairo-list-private.h"
#include "cairo-traps-private.h"

#include <setjmp.h>

typedef struct _rectangle rectangle_t;
typedef struct _edge edge_t;

struct _edge {
    edge_t *next, *prev;
    edge_t *right;
    cairo_fixed_t x, top;
    int dir;
};

struct _rectangle {
    edge_t left, right;
    int32_t top, bottom;
};

#define UNROLL3(x) x x x

/* the parent is always given by index/2 */
#define PQ_PARENT_INDEX(i) ((i) >> 1)
#define PQ_FIRST_ENTRY 1

/* left and right children are index * 2 and (index * 2) +1 respectively */
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)

typedef struct _sweep_line {
    rectangle_t **rectangles;
    rectangle_t **stop;
    edge_t head, tail, *insert, *cursor;
    int32_t current_y;
    int32_t last_y;
    int stop_size;

    int32_t insert_x;
    cairo_fill_rule_t fill_rule;

    cairo_bool_t do_traps;
    void *container;

    jmp_buf unwind;
} sweep_line_t;

#define DEBUG_TRAPS 0

#if DEBUG_TRAPS
static void
dump_traps (cairo_traps_t *traps, const char *filename)
{
    FILE *file;
    int n;

    if (getenv ("CAIRO_DEBUG_TRAPS") == NULL)
	return;

    file = fopen (filename, "a");
    if (file != NULL) {
	for (n = 0; n < traps->num_traps; n++) {
	    fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n",
		     traps->traps[n].top,
		     traps->traps[n].bottom,
		     traps->traps[n].left.p1.x,
		     traps->traps[n].left.p1.y,
		     traps->traps[n].left.p2.x,
		     traps->traps[n].left.p2.y,
		     traps->traps[n].right.p1.x,
		     traps->traps[n].right.p1.y,
		     traps->traps[n].right.p2.x,
		     traps->traps[n].right.p2.y);
	}
	fprintf (file, "\n");
	fclose (file);
    }
}
#else
#define dump_traps(traps, filename)
#endif

static inline int
rectangle_compare_start (const rectangle_t *a,
			 const rectangle_t *b)
{
    return a->top - b->top;
}

static inline int
rectangle_compare_stop (const rectangle_t *a,
			 const rectangle_t *b)
{
    return a->bottom - b->bottom;
}

static inline void
pqueue_push (sweep_line_t *sweep, rectangle_t *rectangle)
{
    rectangle_t **elements;
    int i, parent;

    elements = sweep->stop;
    for (i = ++sweep->stop_size;
	 i != PQ_FIRST_ENTRY &&
	 rectangle_compare_stop (rectangle,
				 elements[parent = PQ_PARENT_INDEX (i)]) < 0;
	 i = parent)
    {
	elements[i] = elements[parent];
    }

    elements[i] = rectangle;
}

static inline void
rectangle_pop_stop (sweep_line_t *sweep)
{
    rectangle_t **elements = sweep->stop;
    rectangle_t *tail;
    int child, i;

    tail = elements[sweep->stop_size--];
    if (sweep->stop_size == 0) {
	elements[PQ_FIRST_ENTRY] = NULL;
	return;
    }

    for (i = PQ_FIRST_ENTRY;
	 (child = PQ_LEFT_CHILD_INDEX (i)) <= sweep->stop_size;
	 i = child)
    {
	if (child != sweep->stop_size &&
	    rectangle_compare_stop (elements[child+1],
				    elements[child]) < 0)
	{
	    child++;
	}

	if (rectangle_compare_stop (elements[child], tail) >= 0)
	    break;

	elements[i] = elements[child];
    }
    elements[i] = tail;
}

static inline rectangle_t *
rectangle_pop_start (sweep_line_t *sweep_line)
{
    return *sweep_line->rectangles++;
}

static inline rectangle_t *
rectangle_peek_stop (sweep_line_t *sweep_line)
{
    return sweep_line->stop[PQ_FIRST_ENTRY];
}

CAIRO_COMBSORT_DECLARE (_rectangle_sort,
			rectangle_t *,
			rectangle_compare_start)

static void
sweep_line_init (sweep_line_t	 *sweep_line,
		 rectangle_t	**rectangles,
		 int		  num_rectangles,
		 cairo_fill_rule_t fill_rule,
		 cairo_bool_t	 do_traps,
		 void		*container)
{
    rectangles[-2] = NULL;
    rectangles[-1] = NULL;
    rectangles[num_rectangles] = NULL;
    sweep_line->rectangles = rectangles;
    sweep_line->stop = rectangles - 2;
    sweep_line->stop_size = 0;

    sweep_line->insert = NULL;
    sweep_line->insert_x = INT_MAX;
    sweep_line->cursor = &sweep_line->tail;

    sweep_line->head.dir = 0;
    sweep_line->head.x = INT32_MIN;
    sweep_line->head.right = NULL;
    sweep_line->head.prev = NULL;
    sweep_line->head.next = &sweep_line->tail;
    sweep_line->tail.prev = &sweep_line->head;
    sweep_line->tail.next = NULL;
    sweep_line->tail.right = NULL;
    sweep_line->tail.x = INT32_MAX;
    sweep_line->tail.dir = 0;

    sweep_line->current_y = INT32_MIN;
    sweep_line->last_y = INT32_MIN;

    sweep_line->fill_rule = fill_rule;
    sweep_line->container = container;
    sweep_line->do_traps = do_traps;
}

static void
edge_end_box (sweep_line_t *sweep_line, edge_t *left, int32_t bot)
{
    cairo_status_t status = CAIRO_STATUS_SUCCESS;

    /* Only emit (trivial) non-degenerate trapezoids with positive height. */
    if (likely (left->top < bot)) {
	if (sweep_line->do_traps) {
	    cairo_line_t _left = {
		{ left->x, left->top },
		{ left->x, bot },
	    }, _right = {
		{ left->right->x, left->top },
		{ left->right->x, bot },
	    };
	    _cairo_traps_add_trap (sweep_line->container, left->top, bot, &_left, &_right);
	    status = _cairo_traps_status ((cairo_traps_t *) sweep_line->container);
	} else {
	    cairo_box_t box;

	    box.p1.x = left->x;
	    box.p1.y = left->top;
	    box.p2.x = left->right->x;
	    box.p2.y = bot;

	    status = _cairo_boxes_add (sweep_line->container,
				       CAIRO_ANTIALIAS_DEFAULT,
				       &box);
	}
    }
    if (unlikely (status))
	longjmp (sweep_line->unwind, status);

    left->right = NULL;
}

/* Start a new trapezoid at the given top y coordinate, whose edges
 * are `edge' and `edge->next'. If `edge' already has a trapezoid,
 * then either add it to the traps in `traps', if the trapezoid's
 * right edge differs from `edge->next', or do nothing if the new
 * trapezoid would be a continuation of the existing one. */
static inline void
edge_start_or_continue_box (sweep_line_t *sweep_line,
			    edge_t	*left,
			    edge_t	*right,
			    int		 top)
{
    if (left->right == right)
	return;

    if (left->right != NULL) {
	if (left->right->x == right->x) {
	    /* continuation on right, so just swap edges */
	    left->right = right;
	    return;
	}

	edge_end_box (sweep_line, left, top);
    }

    if (left->x != right->x) {
	left->top = top;
	left->right = right;
    }
}
/*
 * Merge two sorted edge lists.
 * Input:
 *  - head_a: The head of the first list.
 *  - head_b: The head of the second list; head_b cannot be NULL.
 * Output:
 * Returns the head of the merged list.
 *
 * Implementation notes:
 * To make it fast (in particular, to reduce to an insertion sort whenever
 * one of the two input lists only has a single element) we iterate through
 * a list until its head becomes greater than the head of the other list,
 * then we switch their roles. As soon as one of the two lists is empty, we
 * just attach the other one to the current list and exit.
 * Writes to memory are only needed to "switch" lists (as it also requires
 * attaching to the output list the list which we will be iterating next) and
 * to attach the last non-empty list.
 */
static edge_t *
merge_sorted_edges (edge_t *head_a, edge_t *head_b)
{
    edge_t *head, *prev;
    int32_t x;

    prev = head_a->prev;
    if (head_a->x <= head_b->x) {
	head = head_a;
    } else {
	head_b->prev = prev;
	head = head_b;
	goto start_with_b;
    }

    do {
	x = head_b->x;
	while (head_a != NULL && head_a->x <= x) {
	    prev = head_a;
	    head_a = head_a->next;
	}

	head_b->prev = prev;
	prev->next = head_b;
	if (head_a == NULL)
	    return head;

start_with_b:
	x = head_a->x;
	while (head_b != NULL && head_b->x <= x) {
	    prev = head_b;
	    head_b = head_b->next;
	}

	head_a->prev = prev;
	prev->next = head_a;
	if (head_b == NULL)
	    return head;
    } while (1);
}

/*
 * Sort (part of) a list.
 * Input:
 *  - list: The list to be sorted; list cannot be NULL.
 *  - limit: Recursion limit.
 * Output:
 *  - head_out: The head of the sorted list containing the first 2^(level+1) elements of the
 *              input list; if the input list has fewer elements, head_out be a sorted list
 *              containing all the elements of the input list.
 * Returns the head of the list of unprocessed elements (NULL if the sorted list contains
 * all the elements of the input list).
 *
 * Implementation notes:
 * Special case single element list, unroll/inline the sorting of the first two elements.
 * Some tail recursion is used since we iterate on the bottom-up solution of the problem
 * (we start with a small sorted list and keep merging other lists of the same size to it).
 */
static edge_t *
sort_edges (edge_t  *list,
	    unsigned int  level,
	    edge_t **head_out)
{
    edge_t *head_other, *remaining;
    unsigned int i;

    head_other = list->next;

    if (head_other == NULL) {
	*head_out = list;
	return NULL;
    }

    remaining = head_other->next;
    if (list->x <= head_other->x) {
	*head_out = list;
	head_other->next = NULL;
    } else {
	*head_out = head_other;
	head_other->prev = list->prev;
	head_other->next = list;
	list->prev = head_other;
	list->next = NULL;
    }

    for (i = 0; i < level && remaining; i++) {
	remaining = sort_edges (remaining, i, &head_other);
	*head_out = merge_sorted_edges (*head_out, head_other);
    }

    return remaining;
}

static edge_t *
merge_unsorted_edges (edge_t *head, edge_t *unsorted)
{
    sort_edges (unsorted, UINT_MAX, &unsorted);
    return merge_sorted_edges (head, unsorted);
}

static void
active_edges_insert (sweep_line_t *sweep)
{
    edge_t *prev;
    int x;

    x = sweep->insert_x;
    prev = sweep->cursor;
    if (prev->x > x) {
	do {
	    prev = prev->prev;
	} while (prev->x > x);
    } else {
	while (prev->next->x < x)
	    prev = prev->next;
    }

    prev->next = merge_unsorted_edges (prev->next, sweep->insert);
    sweep->cursor = sweep->insert;
    sweep->insert = NULL;
    sweep->insert_x = INT_MAX;
}

static inline void
active_edges_to_traps (sweep_line_t *sweep)
{
    int top = sweep->current_y;
    edge_t *pos;

    if (sweep->last_y == sweep->current_y)
	return;

    if (sweep->insert)
	active_edges_insert (sweep);

    pos = sweep->head.next;
    if (pos == &sweep->tail)
	return;

    if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING) {
	do {
	    edge_t *left, *right;
	    int winding;

	    left = pos;
	    winding = left->dir;

	    right = left->next;

	    /* Check if there is a co-linear edge with an existing trap */
	    while (right->x == left->x) {
		if (right->right != NULL) {
		    assert (left->right == NULL);
		    /* continuation on left */
		    left->top = right->top;
		    left->right = right->right;
		    right->right = NULL;
		}
		winding += right->dir;
		right = right->next;
	    }

	    if (winding == 0) {
		if (left->right != NULL)
		    edge_end_box (sweep, left, top);
		pos = right;
		continue;
	    }

	    do {
		/* End all subsumed traps */
		if (unlikely (right->right != NULL))
		    edge_end_box (sweep, right, top);

		/* Greedily search for the closing edge, so that we generate
		 * the * maximal span width with the minimal number of
		 * boxes.
		 */
		winding += right->dir;
		if (winding == 0 && right->x != right->next->x)
		    break;

		right = right->next;
	    } while (TRUE);

	    edge_start_or_continue_box (sweep, left, right, top);

	    pos = right->next;
	} while (pos != &sweep->tail);
    } else {
	do {
	    edge_t *right = pos->next;
	    int count = 0;

	    do {
		/* End all subsumed traps */
		if (unlikely (right->right != NULL))
		    edge_end_box (sweep, right, top);

		    /* skip co-linear edges */
		if (++count & 1 && right->x != right->next->x)
		    break;

		right = right->next;
	    } while (TRUE);

	    edge_start_or_continue_box (sweep, pos, right, top);

	    pos = right->next;
	} while (pos != &sweep->tail);
    }

    sweep->last_y = sweep->current_y;
}

static inline void
sweep_line_delete_edge (sweep_line_t *sweep, edge_t *edge)
{
    if (edge->right != NULL) {
	edge_t *next = edge->next;
	if (next->x == edge->x) {
	    next->top = edge->top;
	    next->right = edge->right;
	} else
	    edge_end_box (sweep, edge, sweep->current_y);
    }

    if (sweep->cursor == edge)
	sweep->cursor = edge->prev;

    edge->prev->next = edge->next;
    edge->next->prev = edge->prev;
}

static inline cairo_bool_t
sweep_line_delete (sweep_line_t	*sweep, rectangle_t *rectangle)
{
    cairo_bool_t update;

    update = TRUE;
    if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING &&
	rectangle->left.prev->dir == rectangle->left.dir)
    {
	update = rectangle->left.next != &rectangle->right;
    }

    sweep_line_delete_edge (sweep, &rectangle->left);
    sweep_line_delete_edge (sweep, &rectangle->right);

    rectangle_pop_stop (sweep);
    return update;
}

static inline void
sweep_line_insert (sweep_line_t	*sweep, rectangle_t *rectangle)
{
    if (sweep->insert)
	sweep->insert->prev = &rectangle->right;
    rectangle->right.next = sweep->insert;
    rectangle->right.prev = &rectangle->left;
    rectangle->left.next = &rectangle->right;
    rectangle->left.prev = NULL;
    sweep->insert = &rectangle->left;
    if (rectangle->left.x < sweep->insert_x)
	sweep->insert_x = rectangle->left.x;

    pqueue_push (sweep, rectangle);
}

static cairo_status_t
_cairo_bentley_ottmann_tessellate_rectangular (rectangle_t	**rectangles,
					       int			  num_rectangles,
					       cairo_fill_rule_t	  fill_rule,
					       cairo_bool_t		 do_traps,
					       void			*container)
{
    sweep_line_t sweep_line;
    rectangle_t *rectangle;
    cairo_status_t status;
    cairo_bool_t update = FALSE;

    sweep_line_init (&sweep_line,
		     rectangles, num_rectangles,
		     fill_rule,
		     do_traps, container);
    if ((status = setjmp (sweep_line.unwind)))
	return status;

    rectangle = rectangle_pop_start (&sweep_line);
    do {
	if (rectangle->top != sweep_line.current_y) {
	    rectangle_t *stop;

	    stop = rectangle_peek_stop (&sweep_line);
	    while (stop != NULL && stop->bottom < rectangle->top) {
		if (stop->bottom != sweep_line.current_y) {
		    if (update) {
			active_edges_to_traps (&sweep_line);
			update = FALSE;
		    }

		    sweep_line.current_y = stop->bottom;
		}

		update |= sweep_line_delete (&sweep_line, stop);
		stop = rectangle_peek_stop (&sweep_line);
	    }

	    if (update) {
		active_edges_to_traps (&sweep_line);
		update = FALSE;
	    }

	    sweep_line.current_y = rectangle->top;
	}

	do {
	    sweep_line_insert (&sweep_line, rectangle);
	} while ((rectangle = rectangle_pop_start (&sweep_line)) != NULL &&
		 sweep_line.current_y == rectangle->top);
	update = TRUE;
    } while (rectangle);

    while ((rectangle = rectangle_peek_stop (&sweep_line)) != NULL) {
	if (rectangle->bottom != sweep_line.current_y) {
	    if (update) {
		active_edges_to_traps (&sweep_line);
		update = FALSE;
	    }
	    sweep_line.current_y = rectangle->bottom;
	}

	update |= sweep_line_delete (&sweep_line, rectangle);
    }

    return CAIRO_STATUS_SUCCESS;
}

cairo_status_t
_cairo_bentley_ottmann_tessellate_rectangular_traps (cairo_traps_t *traps,
						     cairo_fill_rule_t fill_rule)
{
    rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
    rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
    rectangle_t *rectangles, **rectangles_ptrs;
    cairo_status_t status;
    int i;

    if (unlikely (traps->num_traps <= 1))
	return CAIRO_STATUS_SUCCESS;

    assert (traps->is_rectangular);

    dump_traps (traps, "bo-rects-traps-in.txt");

    rectangles = stack_rectangles;
    rectangles_ptrs = stack_rectangles_ptrs;
    if (traps->num_traps > ARRAY_LENGTH (stack_rectangles)) {
	rectangles = _cairo_malloc_ab_plus_c (traps->num_traps,
					      sizeof (rectangle_t) +
					      sizeof (rectangle_t *),
					      3*sizeof (rectangle_t *));
	if (unlikely (rectangles == NULL))
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);

	rectangles_ptrs = (rectangle_t **) (rectangles + traps->num_traps);
    }

    for (i = 0; i < traps->num_traps; i++) {
	if (traps->traps[i].left.p1.x < traps->traps[i].right.p1.x) {
	    rectangles[i].left.x = traps->traps[i].left.p1.x;
	    rectangles[i].left.dir = 1;

	    rectangles[i].right.x = traps->traps[i].right.p1.x;
	    rectangles[i].right.dir = -1;
	} else {
	    rectangles[i].right.x = traps->traps[i].left.p1.x;
	    rectangles[i].right.dir = 1;

	    rectangles[i].left.x = traps->traps[i].right.p1.x;
	    rectangles[i].left.dir = -1;
	}

	rectangles[i].left.right = NULL;
	rectangles[i].right.right = NULL;

	rectangles[i].top = traps->traps[i].top;
	rectangles[i].bottom = traps->traps[i].bottom;

	rectangles_ptrs[i+2] = &rectangles[i];
    }
    /* XXX incremental sort */
    _rectangle_sort (rectangles_ptrs+2, i);

    _cairo_traps_clear (traps);
    status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, i,
							    fill_rule,
							    TRUE, traps);
    traps->is_rectilinear = TRUE;
    traps->is_rectangular = TRUE;

    if (rectangles != stack_rectangles)
	free (rectangles);

    dump_traps (traps, "bo-rects-traps-out.txt");

    return status;
}

cairo_status_t
_cairo_bentley_ottmann_tessellate_boxes (const cairo_boxes_t *in,
					 cairo_fill_rule_t fill_rule,
					 cairo_boxes_t *out)
{
    rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
    rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
    rectangle_t *rectangles, **rectangles_ptrs;
    rectangle_t *stack_rectangles_chain[CAIRO_STACK_ARRAY_LENGTH (rectangle_t *) ];
    rectangle_t **rectangles_chain = NULL;
    const struct _cairo_boxes_chunk *chunk;
    cairo_status_t status;
    int i, j, y_min, y_max;

    if (unlikely (in->num_boxes == 0)) {
	_cairo_boxes_clear (out);
	return CAIRO_STATUS_SUCCESS;
    }

    if (in->num_boxes == 1) {
	if (in == out) {
	    cairo_box_t *box = &in->chunks.base[0];

	    if (box->p1.x > box->p2.x) {
		cairo_fixed_t tmp = box->p1.x;
		box->p1.x = box->p2.x;
		box->p2.x = tmp;
	    }
	} else {
	    cairo_box_t box = in->chunks.base[0];

	    if (box.p1.x > box.p2.x) {
		cairo_fixed_t tmp = box.p1.x;
		box.p1.x = box.p2.x;
		box.p2.x = tmp;
	    }

	    _cairo_boxes_clear (out);
	    status = _cairo_boxes_add (out, CAIRO_ANTIALIAS_DEFAULT, &box);
	    assert (status == CAIRO_STATUS_SUCCESS);
	}
	return CAIRO_STATUS_SUCCESS;
    }

    y_min = INT_MAX; y_max = INT_MIN;
    for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
	const cairo_box_t *box = chunk->base;
	for (i = 0; i < chunk->count; i++) {
	    if (box[i].p1.y < y_min)
		y_min = box[i].p1.y;
	    if (box[i].p1.y > y_max)
		y_max = box[i].p1.y;
	}
    }
    y_min = _cairo_fixed_integer_floor (y_min);
    y_max = _cairo_fixed_integer_floor (y_max) + 1;
    y_max -= y_min;

    if (y_max < in->num_boxes) {
	rectangles_chain = stack_rectangles_chain;
	if (y_max > ARRAY_LENGTH (stack_rectangles_chain)) {
	    rectangles_chain = _cairo_malloc_ab (y_max, sizeof (rectangle_t *));
	    if (unlikely (rectangles_chain == NULL))
		return _cairo_error (CAIRO_STATUS_NO_MEMORY);
	}
	memset (rectangles_chain, 0, y_max * sizeof (rectangle_t*));
    }

    rectangles = stack_rectangles;
    rectangles_ptrs = stack_rectangles_ptrs;
    if (in->num_boxes > ARRAY_LENGTH (stack_rectangles)) {
	rectangles = _cairo_malloc_ab_plus_c (in->num_boxes,
					      sizeof (rectangle_t) +
					      sizeof (rectangle_t *),
					      3*sizeof (rectangle_t *));
	if (unlikely (rectangles == NULL)) {
	    if (rectangles_chain != stack_rectangles_chain)
		free (rectangles_chain);
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
	}

	rectangles_ptrs = (rectangle_t **) (rectangles + in->num_boxes);
    }

    j = 0;
    for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
	const cairo_box_t *box = chunk->base;
	for (i = 0; i < chunk->count; i++) {
	    int h;

	    if (box[i].p1.x < box[i].p2.x) {
		rectangles[j].left.x = box[i].p1.x;
		rectangles[j].left.dir = 1;

		rectangles[j].right.x = box[i].p2.x;
		rectangles[j].right.dir = -1;
	    } else {
		rectangles[j].right.x = box[i].p1.x;
		rectangles[j].right.dir = 1;

		rectangles[j].left.x = box[i].p2.x;
		rectangles[j].left.dir = -1;
	    }

	    rectangles[j].left.right = NULL;
	    rectangles[j].right.right = NULL;

	    rectangles[j].top = box[i].p1.y;
	    rectangles[j].bottom = box[i].p2.y;

	    if (rectangles_chain) {
		h = _cairo_fixed_integer_floor (box[i].p1.y) - y_min;
		rectangles[j].left.next = (edge_t *)rectangles_chain[h];
		rectangles_chain[h] = &rectangles[j];
	    } else {
		rectangles_ptrs[j+2] = &rectangles[j];
	    }
	    j++;
	}
    }

    if (rectangles_chain) {
	j = 2;
	for (y_min = 0; y_min < y_max; y_min++) {
	    rectangle_t *r;
	    int start = j;
	    for (r = rectangles_chain[y_min]; r; r = (rectangle_t *)r->left.next)
		rectangles_ptrs[j++] = r;
	    if (j > start + 1)
		_rectangle_sort (rectangles_ptrs + start, j - start);
	}

	if (rectangles_chain != stack_rectangles_chain)
	    free (rectangles_chain);

	j -= 2;
    } else {
	_rectangle_sort (rectangles_ptrs + 2, j);
    }

    _cairo_boxes_clear (out);
    status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, j,
							    fill_rule,
							    FALSE, out);
    if (rectangles != stack_rectangles)
	free (rectangles);

    return status;
}