/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ /* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * Copyright © 2005 Red Hat, Inc. * Copyright © 2006 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" #include "cairo-box-inline.h" const cairo_rectangle_int_t _cairo_empty_rectangle = { 0, 0, 0, 0 }; const cairo_rectangle_int_t _cairo_unbounded_rectangle = { CAIRO_RECT_INT_MIN, CAIRO_RECT_INT_MIN, CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN, CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN, }; cairo_private void _cairo_box_from_doubles (cairo_box_t *box, double *x1, double *y1, double *x2, double *y2) { box->p1.x = _cairo_fixed_from_double (*x1); box->p1.y = _cairo_fixed_from_double (*y1); box->p2.x = _cairo_fixed_from_double (*x2); box->p2.y = _cairo_fixed_from_double (*y2); } cairo_private void _cairo_box_to_doubles (const cairo_box_t *box, double *x1, double *y1, double *x2, double *y2) { *x1 = _cairo_fixed_to_double (box->p1.x); *y1 = _cairo_fixed_to_double (box->p1.y); *x2 = _cairo_fixed_to_double (box->p2.x); *y2 = _cairo_fixed_to_double (box->p2.y); } void _cairo_box_from_rectangle (cairo_box_t *box, const cairo_rectangle_int_t *rect) { box->p1.x = _cairo_fixed_from_int (rect->x); box->p1.y = _cairo_fixed_from_int (rect->y); box->p2.x = _cairo_fixed_from_int (rect->x + rect->width); box->p2.y = _cairo_fixed_from_int (rect->y + rect->height); } void _cairo_boxes_get_extents (const cairo_box_t *boxes, int num_boxes, cairo_box_t *extents) { assert (num_boxes > 0); *extents = *boxes; while (--num_boxes) _cairo_box_add_box (extents, ++boxes); } /* XXX We currently have a confusing mix of boxes and rectangles as * exemplified by this function. A #cairo_box_t is a rectangular area * represented by the coordinates of the upper left and lower right * corners, expressed in fixed point numbers. A #cairo_rectangle_int_t is * also a rectangular area, but represented by the upper left corner * and the width and the height, as integer numbers. * * This function converts a #cairo_box_t to a #cairo_rectangle_int_t by * increasing the area to the nearest integer coordinates. We should * standardize on #cairo_rectangle_fixed_t and #cairo_rectangle_int_t, and * this function could be renamed to the more reasonable * _cairo_rectangle_fixed_round. */ void _cairo_box_round_to_rectangle (const cairo_box_t *box, cairo_rectangle_int_t *rectangle) { rectangle->x = _cairo_fixed_integer_floor (box->p1.x); rectangle->y = _cairo_fixed_integer_floor (box->p1.y); rectangle->width = _cairo_fixed_integer_ceil (box->p2.x) - rectangle->x; rectangle->height = _cairo_fixed_integer_ceil (box->p2.y) - rectangle->y; } cairo_bool_t _cairo_rectangle_intersect (cairo_rectangle_int_t *dst, const cairo_rectangle_int_t *src) { int x1, y1, x2, y2; x1 = MAX (dst->x, src->x); y1 = MAX (dst->y, src->y); /* Beware the unsigned promotion, fortunately we have bits to spare * as (CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN) < UINT_MAX */ x2 = MIN (dst->x + (int) dst->width, src->x + (int) src->width); y2 = MIN (dst->y + (int) dst->height, src->y + (int) src->height); if (x1 >= x2 || y1 >= y2) { dst->x = 0; dst->y = 0; dst->width = 0; dst->height = 0; return FALSE; } else { dst->x = x1; dst->y = y1; dst->width = x2 - x1; dst->height = y2 - y1; return TRUE; } } cairo_bool_t _cairo_rectangle_exact_intersect (cairo_rectangle_t *dst, const cairo_rectangle_t *src) { double x1, y1, x2, y2; x1 = MAX (dst->x, src->x); y1 = MAX (dst->y, src->y); /* Beware the unsigned promotion, fortunately we have bits to spare * as (CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN) < UINT_MAX */ x2 = MIN (dst->x + dst->width, src->x + src->width); y2 = MIN (dst->y + dst->height, src->y + src->height); if (x1 >= x2 || y1 >= y2) { dst->x = 0; dst->y = 0; dst->width = 0; dst->height = 0; return FALSE; } else { dst->x = x1; dst->y = y1; dst->width = x2 - x1; dst->height = y2 - y1; return TRUE; } } /* Extends the dst rectangle to also contain src. * If one of the rectangles is empty, the result is undefined */ void _cairo_rectangle_union (cairo_rectangle_int_t *dst, const cairo_rectangle_int_t *src) { int x1, y1, x2, y2; x1 = MIN (dst->x, src->x); y1 = MIN (dst->y, src->y); /* Beware the unsigned promotion, fortunately we have bits to spare * as (CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN) < UINT_MAX */ x2 = MAX (dst->x + (int) dst->width, src->x + (int) src->width); y2 = MAX (dst->y + (int) dst->height, src->y + (int) src->height); dst->x = x1; dst->y = y1; dst->width = x2 - x1; dst->height = y2 - y1; } #define P1x (line->p1.x) #define P1y (line->p1.y) #define P2x (line->p2.x) #define P2y (line->p2.y) #define B1x (box->p1.x) #define B1y (box->p1.y) #define B2x (box->p2.x) #define B2y (box->p2.y) /* * Check whether any part of line intersects box. This function essentially * computes whether the ray starting at line->p1 in the direction of line->p2 * intersects the box before it reaches p2. Normally, this is done * by dividing by the lengths of the line projected onto each axis. Because * we're in fixed point, this function does a bit more work to avoid having to * do the division -- we don't care about the actual intersection point, so * it's of no interest to us. */ cairo_bool_t _cairo_box_intersects_line_segment (const cairo_box_t *box, cairo_line_t *line) { cairo_fixed_t t1=0, t2=0, t3=0, t4=0; cairo_int64_t t1y, t2y, t3x, t4x; cairo_fixed_t xlen, ylen; if (_cairo_box_contains_point (box, &line->p1) || _cairo_box_contains_point (box, &line->p2)) return TRUE; xlen = P2x - P1x; ylen = P2y - P1y; if (xlen) { if (xlen > 0) { t1 = B1x - P1x; t2 = B2x - P1x; } else { t1 = P1x - B2x; t2 = P1x - B1x; xlen = - xlen; } if ((t1 < 0 || t1 > xlen) && (t2 < 0 || t2 > xlen)) return FALSE; } else { /* Fully vertical line -- check that X is in bounds */ if (P1x < B1x || P1x > B2x) return FALSE; } if (ylen) { if (ylen > 0) { t3 = B1y - P1y; t4 = B2y - P1y; } else { t3 = P1y - B2y; t4 = P1y - B1y; ylen = - ylen; } if ((t3 < 0 || t3 > ylen) && (t4 < 0 || t4 > ylen)) return FALSE; } else { /* Fully horizontal line -- check Y */ if (P1y < B1y || P1y > B2y) return FALSE; } /* If we had a horizontal or vertical line, then it's already been checked */ if (P1x == P2x || P1y == P2y) return TRUE; /* Check overlap. Note that t1 < t2 and t3 < t4 here. */ t1y = _cairo_int32x32_64_mul (t1, ylen); t2y = _cairo_int32x32_64_mul (t2, ylen); t3x = _cairo_int32x32_64_mul (t3, xlen); t4x = _cairo_int32x32_64_mul (t4, xlen); if (_cairo_int64_lt(t1y, t4x) && _cairo_int64_lt(t3x, t2y)) return TRUE; return FALSE; } static cairo_status_t _cairo_box_add_spline_point (void *closure, const cairo_point_t *point, const cairo_slope_t *tangent) { _cairo_box_add_point (closure, point); return CAIRO_STATUS_SUCCESS; } /* assumes a has been previously added */ void _cairo_box_add_curve_to (cairo_box_t *extents, const cairo_point_t *a, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { _cairo_box_add_point (extents, d); if (!_cairo_box_contains_point (extents, b) || !_cairo_box_contains_point (extents, c)) { cairo_status_t status; status = _cairo_spline_bound (_cairo_box_add_spline_point, extents, a, b, c, d); assert (status == CAIRO_STATUS_SUCCESS); } } void _cairo_rectangle_int_from_double (cairo_rectangle_int_t *recti, const cairo_rectangle_t *rectf) { recti->x = floor (rectf->x); recti->y = floor (rectf->y); recti->width = ceil (rectf->x + rectf->width) - floor (rectf->x); recti->height = ceil (rectf->y + rectf->height) - floor (rectf->y); }