/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ /* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * Copyright © 2013 Intel Corporation * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth * Chris Wilson */ #include "cairoint.h" #include "cairo-box-inline.h" #include "cairo-path-fixed-private.h" #include "cairo-slope-private.h" #include "cairo-stroke-dash-private.h" #include "cairo-traps-private.h" #include struct stroker { const cairo_stroke_style_t *style; const cairo_matrix_t *ctm; const cairo_matrix_t *ctm_inverse; double spline_cusp_tolerance; double half_line_width; double tolerance; double ctm_determinant; cairo_bool_t ctm_det_positive; cairo_line_join_t line_join; cairo_traps_t *traps; cairo_pen_t pen; cairo_point_t first_point; cairo_bool_t has_initial_sub_path; cairo_bool_t has_current_face; cairo_stroke_face_t current_face; cairo_bool_t has_first_face; cairo_stroke_face_t first_face; cairo_stroker_dash_t dash; cairo_bool_t has_bounds; cairo_box_t tight_bounds; cairo_box_t line_bounds; cairo_box_t join_bounds; }; static cairo_status_t stroker_init (struct stroker *stroker, const cairo_path_fixed_t *path, const cairo_stroke_style_t *style, const cairo_matrix_t *ctm, const cairo_matrix_t *ctm_inverse, double tolerance, cairo_traps_t *traps) { cairo_status_t status; stroker->style = style; stroker->ctm = ctm; stroker->ctm_inverse = NULL; if (! _cairo_matrix_is_identity (ctm_inverse)) stroker->ctm_inverse = ctm_inverse; stroker->line_join = style->line_join; stroker->half_line_width = style->line_width / 2.0; stroker->tolerance = tolerance; stroker->traps = traps; /* To test whether we need to join two segments of a spline using * a round-join or a bevel-join, we can inspect the angle between the * two segments. If the difference between the chord distance * (half-line-width times the cosine of the bisection angle) and the * half-line-width itself is greater than tolerance then we need to * inject a point. */ stroker->spline_cusp_tolerance = 1 - tolerance / stroker->half_line_width; stroker->spline_cusp_tolerance *= stroker->spline_cusp_tolerance; stroker->spline_cusp_tolerance *= 2; stroker->spline_cusp_tolerance -= 1; stroker->ctm_determinant = _cairo_matrix_compute_determinant (stroker->ctm); stroker->ctm_det_positive = stroker->ctm_determinant >= 0.0; status = _cairo_pen_init (&stroker->pen, stroker->half_line_width, tolerance, ctm); if (unlikely (status)) return status; stroker->has_current_face = FALSE; stroker->has_first_face = FALSE; stroker->has_initial_sub_path = FALSE; _cairo_stroker_dash_init (&stroker->dash, style); stroker->has_bounds = traps->num_limits; if (stroker->has_bounds) { /* Extend the bounds in each direction to account for the maximum area * we might generate trapezoids, to capture line segments that are outside * of the bounds but which might generate rendering that's within bounds. */ double dx, dy; cairo_fixed_t fdx, fdy; stroker->tight_bounds = traps->bounds; _cairo_stroke_style_max_distance_from_path (stroker->style, path, stroker->ctm, &dx, &dy); _cairo_stroke_style_max_line_distance_from_path (stroker->style, path, stroker->ctm, &dx, &dy); fdx = _cairo_fixed_from_double (dx); fdy = _cairo_fixed_from_double (dy); stroker->line_bounds = stroker->tight_bounds; stroker->line_bounds.p1.x -= fdx; stroker->line_bounds.p2.x += fdx; stroker->line_bounds.p1.y -= fdy; stroker->line_bounds.p2.y += fdy; _cairo_stroke_style_max_join_distance_from_path (stroker->style, path, stroker->ctm, &dx, &dy); fdx = _cairo_fixed_from_double (dx); fdy = _cairo_fixed_from_double (dy); stroker->join_bounds = stroker->tight_bounds; stroker->join_bounds.p1.x -= fdx; stroker->join_bounds.p2.x += fdx; stroker->join_bounds.p1.y -= fdy; stroker->join_bounds.p2.y += fdy; } return CAIRO_STATUS_SUCCESS; } static void stroker_fini (struct stroker *stroker) { _cairo_pen_fini (&stroker->pen); } static void translate_point (cairo_point_t *point, cairo_point_t *offset) { point->x += offset->x; point->y += offset->y; } static int join_is_clockwise (const cairo_stroke_face_t *in, const cairo_stroke_face_t *out) { return _cairo_slope_compare (&in->dev_vector, &out->dev_vector) < 0; } static int slope_compare_sgn (double dx1, double dy1, double dx2, double dy2) { double c = dx1 * dy2 - dx2 * dy1; if (c > 0) return 1; if (c < 0) return -1; return 0; } static cairo_bool_t stroker_intersects_join (const struct stroker *stroker, const cairo_point_t *in, const cairo_point_t *out) { cairo_line_t segment; if (! stroker->has_bounds) return TRUE; segment.p1 = *in; segment.p2 = *out; return _cairo_box_intersects_line_segment (&stroker->join_bounds, &segment); } static void join (struct stroker *stroker, cairo_stroke_face_t *in, cairo_stroke_face_t *out) { int clockwise = join_is_clockwise (out, in); cairo_point_t *inpt, *outpt; if (in->cw.x == out->cw.x && in->cw.y == out->cw.y && in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y) { return; } if (clockwise) { inpt = &in->ccw; outpt = &out->ccw; } else { inpt = &in->cw; outpt = &out->cw; } if (! stroker_intersects_join (stroker, inpt, outpt)) return; switch (stroker->line_join) { case CAIRO_LINE_JOIN_ROUND: /* construct a fan around the common midpoint */ if ((in->dev_slope.x * out->dev_slope.x + in->dev_slope.y * out->dev_slope.y) < stroker->spline_cusp_tolerance) { int start, stop; cairo_point_t tri[3], edges[4]; cairo_pen_t *pen = &stroker->pen; edges[0] = in->cw; edges[1] = in->ccw; tri[0] = in->point; tri[1] = *inpt; if (clockwise) { _cairo_pen_find_active_ccw_vertices (pen, &in->dev_vector, &out->dev_vector, &start, &stop); while (start != stop) { tri[2] = in->point; translate_point (&tri[2], &pen->vertices[start].point); edges[2] = in->point; edges[3] = tri[2]; _cairo_traps_tessellate_triangle_with_edges (stroker->traps, tri, edges); tri[1] = tri[2]; edges[0] = edges[2]; edges[1] = edges[3]; if (start-- == 0) start += pen->num_vertices; } } else { _cairo_pen_find_active_cw_vertices (pen, &in->dev_vector, &out->dev_vector, &start, &stop); while (start != stop) { tri[2] = in->point; translate_point (&tri[2], &pen->vertices[start].point); edges[2] = in->point; edges[3] = tri[2]; _cairo_traps_tessellate_triangle_with_edges (stroker->traps, tri, edges); tri[1] = tri[2]; edges[0] = edges[2]; edges[1] = edges[3]; if (++start == pen->num_vertices) start = 0; } } tri[2] = *outpt; edges[2] = out->cw; edges[3] = out->ccw; _cairo_traps_tessellate_triangle_with_edges (stroker->traps, tri, edges); } else { cairo_point_t t[] = { { in->point.x, in->point.y}, { inpt->x, inpt->y }, { outpt->x, outpt->y } }; cairo_point_t e[] = { { in->cw.x, in->cw.y}, { in->ccw.x, in->ccw.y }, { out->cw.x, out->cw.y}, { out->ccw.x, out->ccw.y } }; _cairo_traps_tessellate_triangle_with_edges (stroker->traps, t, e); } break; case CAIRO_LINE_JOIN_MITER: default: { /* dot product of incoming slope vector with outgoing slope vector */ double in_dot_out = (-in->usr_vector.x * out->usr_vector.x + -in->usr_vector.y * out->usr_vector.y); double ml = stroker->style->miter_limit; /* Check the miter limit -- lines meeting at an acute angle * can generate long miters, the limit converts them to bevel * * Consider the miter join formed when two line segments * meet at an angle psi: * * /.\ * /. .\ * /./ \.\ * /./psi\.\ * * We can zoom in on the right half of that to see: * * |\ * | \ psi/2 * | \ * | \ * | \ * | \ * miter \ * length \ * | \ * | .\ * | . \ * |. line \ * \ width \ * \ \ * * * The right triangle in that figure, (the line-width side is * shown faintly with three '.' characters), gives us the * following expression relating miter length, angle and line * width: * * 1 /sin (psi/2) = miter_length / line_width * * The right-hand side of this relationship is the same ratio * in which the miter limit (ml) is expressed. We want to know * when the miter length is within the miter limit. That is * when the following condition holds: * * 1/sin(psi/2) <= ml * 1 <= ml sin(psi/2) * 1 <= ml² sin²(psi/2) * 2 <= ml² 2 sin²(psi/2) * 2·sin²(psi/2) = 1-cos(psi) * 2 <= ml² (1-cos(psi)) * * in · out = |in| |out| cos (psi) * * in and out are both unit vectors, so: * * in · out = cos (psi) * * 2 <= ml² (1 - in · out) * */ if (2 <= ml * ml * (1 - in_dot_out)) { double x1, y1, x2, y2; double mx, my; double dx1, dx2, dy1, dy2; cairo_point_t outer; cairo_point_t quad[4]; double ix, iy; double fdx1, fdy1, fdx2, fdy2; double mdx, mdy; /* * we've got the points already transformed to device * space, but need to do some computation with them and * also need to transform the slope from user space to * device space */ /* outer point of incoming line face */ x1 = _cairo_fixed_to_double (inpt->x); y1 = _cairo_fixed_to_double (inpt->y); dx1 = in->usr_vector.x; dy1 = in->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1); /* outer point of outgoing line face */ x2 = _cairo_fixed_to_double (outpt->x); y2 = _cairo_fixed_to_double (outpt->y); dx2 = out->usr_vector.x; dy2 = out->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2); /* * Compute the location of the outer corner of the miter. * That's pretty easy -- just the intersection of the two * outer edges. We've got slopes and points on each * of those edges. Compute my directly, then compute * mx by using the edge with the larger dy; that avoids * dividing by values close to zero. */ my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) / (dx1 * dy2 - dx2 * dy1)); if (fabs (dy1) >= fabs (dy2)) mx = (my - y1) * dx1 / dy1 + x1; else mx = (my - y2) * dx2 / dy2 + x2; /* * When the two outer edges are nearly parallel, slight * perturbations in the position of the outer points of the lines * caused by representing them in fixed point form can cause the * intersection point of the miter to move a large amount. If * that moves the miter intersection from between the two faces, * then draw a bevel instead. */ ix = _cairo_fixed_to_double (in->point.x); iy = _cairo_fixed_to_double (in->point.y); /* slope of one face */ fdx1 = x1 - ix; fdy1 = y1 - iy; /* slope of the other face */ fdx2 = x2 - ix; fdy2 = y2 - iy; /* slope from the intersection to the miter point */ mdx = mx - ix; mdy = my - iy; /* * Make sure the miter point line lies between the two * faces by comparing the slopes */ if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) != slope_compare_sgn (fdx2, fdy2, mdx, mdy)) { /* * Draw the quadrilateral */ outer.x = _cairo_fixed_from_double (mx); outer.y = _cairo_fixed_from_double (my); quad[0] = in->point; quad[1] = *inpt; quad[2] = outer; quad[3] = *outpt; _cairo_traps_tessellate_convex_quad (stroker->traps, quad); break; } } /* fall through ... */ } case CAIRO_LINE_JOIN_BEVEL: { cairo_point_t t[] = { { in->point.x, in->point.y }, { inpt->x, inpt->y }, { outpt->x, outpt->y } }; cairo_point_t e[] = { { in->cw.x, in->cw.y }, { in->ccw.x, in->ccw.y }, { out->cw.x, out->cw.y }, { out->ccw.x, out->ccw.y } }; _cairo_traps_tessellate_triangle_with_edges (stroker->traps, t, e); break; } } } static void add_cap (struct stroker *stroker, cairo_stroke_face_t *f) { switch (stroker->style->line_cap) { case CAIRO_LINE_CAP_ROUND: { int start, stop; cairo_slope_t in_slope, out_slope; cairo_point_t tri[3], edges[4]; cairo_pen_t *pen = &stroker->pen; in_slope = f->dev_vector; out_slope.dx = -in_slope.dx; out_slope.dy = -in_slope.dy; _cairo_pen_find_active_cw_vertices (pen, &in_slope, &out_slope, &start, &stop); edges[0] = f->cw; edges[1] = f->ccw; tri[0] = f->point; tri[1] = f->cw; while (start != stop) { tri[2] = f->point; translate_point (&tri[2], &pen->vertices[start].point); edges[2] = f->point; edges[3] = tri[2]; _cairo_traps_tessellate_triangle_with_edges (stroker->traps, tri, edges); tri[1] = tri[2]; edges[0] = edges[2]; edges[1] = edges[3]; if (++start == pen->num_vertices) start = 0; } tri[2] = f->ccw; edges[2] = f->cw; edges[3] = f->ccw; _cairo_traps_tessellate_triangle_with_edges (stroker->traps, tri, edges); break; } case CAIRO_LINE_CAP_SQUARE: { double dx, dy; cairo_slope_t fvector; cairo_point_t quad[4]; dx = f->usr_vector.x; dy = f->usr_vector.y; dx *= stroker->half_line_width; dy *= stroker->half_line_width; cairo_matrix_transform_distance (stroker->ctm, &dx, &dy); fvector.dx = _cairo_fixed_from_double (dx); fvector.dy = _cairo_fixed_from_double (dy); quad[0] = f->cw; quad[1].x = f->cw.x + fvector.dx; quad[1].y = f->cw.y + fvector.dy; quad[2].x = f->ccw.x + fvector.dx; quad[2].y = f->ccw.y + fvector.dy; quad[3] = f->ccw; _cairo_traps_tessellate_convex_quad (stroker->traps, quad); break; } case CAIRO_LINE_CAP_BUTT: default: break; } } static void add_leading_cap (struct stroker *stroker, cairo_stroke_face_t *face) { cairo_stroke_face_t reversed; cairo_point_t t; reversed = *face; /* The initial cap needs an outward facing vector. Reverse everything */ reversed.usr_vector.x = -reversed.usr_vector.x; reversed.usr_vector.y = -reversed.usr_vector.y; reversed.dev_vector.dx = -reversed.dev_vector.dx; reversed.dev_vector.dy = -reversed.dev_vector.dy; t = reversed.cw; reversed.cw = reversed.ccw; reversed.ccw = t; add_cap (stroker, &reversed); } static void add_trailing_cap (struct stroker *stroker, cairo_stroke_face_t *face) { add_cap (stroker, face); } static inline double normalize_slope (double *dx, double *dy) { double dx0 = *dx, dy0 = *dy; if (dx0 == 0.0 && dy0 == 0.0) return 0; if (dx0 == 0.0) { *dx = 0.0; if (dy0 > 0.0) { *dy = 1.0; return dy0; } else { *dy = -1.0; return -dy0; } } else if (dy0 == 0.0) { *dy = 0.0; if (dx0 > 0.0) { *dx = 1.0; return dx0; } else { *dx = -1.0; return -dx0; } } else { double mag = hypot (dx0, dy0); *dx = dx0 / mag; *dy = dy0 / mag; return mag; } } static void compute_face (const cairo_point_t *point, const cairo_slope_t *dev_slope, struct stroker *stroker, cairo_stroke_face_t *face) { double face_dx, face_dy; cairo_point_t offset_ccw, offset_cw; double slope_dx, slope_dy; slope_dx = _cairo_fixed_to_double (dev_slope->dx); slope_dy = _cairo_fixed_to_double (dev_slope->dy); face->length = normalize_slope (&slope_dx, &slope_dy); face->dev_slope.x = slope_dx; face->dev_slope.y = slope_dy; /* * rotate to get a line_width/2 vector along the face, note that * the vector must be rotated the right direction in device space, * but by 90° in user space. So, the rotation depends on * whether the ctm reflects or not, and that can be determined * by looking at the determinant of the matrix. */ if (stroker->ctm_inverse) { cairo_matrix_transform_distance (stroker->ctm_inverse, &slope_dx, &slope_dy); normalize_slope (&slope_dx, &slope_dy); if (stroker->ctm_det_positive) { face_dx = - slope_dy * stroker->half_line_width; face_dy = slope_dx * stroker->half_line_width; } else { face_dx = slope_dy * stroker->half_line_width; face_dy = - slope_dx * stroker->half_line_width; } /* back to device space */ cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy); } else { face_dx = - slope_dy * stroker->half_line_width; face_dy = slope_dx * stroker->half_line_width; } offset_ccw.x = _cairo_fixed_from_double (face_dx); offset_ccw.y = _cairo_fixed_from_double (face_dy); offset_cw.x = -offset_ccw.x; offset_cw.y = -offset_ccw.y; face->ccw = *point; translate_point (&face->ccw, &offset_ccw); face->point = *point; face->cw = *point; translate_point (&face->cw, &offset_cw); face->usr_vector.x = slope_dx; face->usr_vector.y = slope_dy; face->dev_vector = *dev_slope; } static void add_caps (struct stroker *stroker) { /* check for a degenerative sub_path */ if (stroker->has_initial_sub_path && !stroker->has_first_face && !stroker->has_current_face && stroker->style->line_cap == CAIRO_LINE_CAP_ROUND) { /* pick an arbitrary slope to use */ cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 }; cairo_stroke_face_t face; /* arbitrarily choose first_point * first_point and current_point should be the same */ compute_face (&stroker->first_point, &slope, stroker, &face); add_leading_cap (stroker, &face); add_trailing_cap (stroker, &face); } if (stroker->has_first_face) add_leading_cap (stroker, &stroker->first_face); if (stroker->has_current_face) add_trailing_cap (stroker, &stroker->current_face); } static cairo_bool_t stroker_intersects_edge (const struct stroker *stroker, const cairo_stroke_face_t *start, const cairo_stroke_face_t *end) { cairo_box_t box; if (! stroker->has_bounds) return TRUE; if (_cairo_box_contains_point (&stroker->tight_bounds, &start->cw)) return TRUE; box.p2 = box.p1 = start->cw; if (_cairo_box_contains_point (&stroker->tight_bounds, &start->ccw)) return TRUE; _cairo_box_add_point (&box, &start->ccw); if (_cairo_box_contains_point (&stroker->tight_bounds, &end->cw)) return TRUE; _cairo_box_add_point (&box, &end->cw); if (_cairo_box_contains_point (&stroker->tight_bounds, &end->ccw)) return TRUE; _cairo_box_add_point (&box, &end->ccw); return (box.p2.x > stroker->tight_bounds.p1.x && box.p1.x < stroker->tight_bounds.p2.x && box.p2.y > stroker->tight_bounds.p1.y && box.p1.y < stroker->tight_bounds.p2.y); } static void add_sub_edge (struct stroker *stroker, const cairo_point_t *p1, const cairo_point_t *p2, const cairo_slope_t *dev_slope, cairo_stroke_face_t *start, cairo_stroke_face_t *end) { cairo_point_t rectangle[4]; compute_face (p1, dev_slope, stroker, start); *end = *start; end->point = *p2; rectangle[0].x = p2->x - p1->x; rectangle[0].y = p2->y - p1->y; translate_point (&end->ccw, &rectangle[0]); translate_point (&end->cw, &rectangle[0]); if (p1->x == p2->x && p1->y == p2->y) return; if (! stroker_intersects_edge (stroker, start, end)) return; rectangle[0] = start->cw; rectangle[1] = start->ccw; rectangle[2] = end->ccw; rectangle[3] = end->cw; _cairo_traps_tessellate_convex_quad (stroker->traps, rectangle); } static cairo_status_t move_to (void *closure, const cairo_point_t *point) { struct stroker *stroker = closure; /* Cap the start and end of the previous sub path as needed */ add_caps (stroker); stroker->first_point = *point; stroker->current_face.point = *point; stroker->has_first_face = FALSE; stroker->has_current_face = FALSE; stroker->has_initial_sub_path = FALSE; return CAIRO_STATUS_SUCCESS; } static cairo_status_t move_to_dashed (void *closure, const cairo_point_t *point) { /* reset the dash pattern for new sub paths */ struct stroker *stroker = closure; _cairo_stroker_dash_start (&stroker->dash); return move_to (closure, point); } static cairo_status_t line_to (void *closure, const cairo_point_t *point) { struct stroker *stroker = closure; cairo_stroke_face_t start, end; const cairo_point_t *p1 = &stroker->current_face.point; const cairo_point_t *p2 = point; cairo_slope_t dev_slope; stroker->has_initial_sub_path = TRUE; memset (&start, 0, sizeof (cairo_stroke_face_t)); memset (&end, 0, sizeof (cairo_stroke_face_t)); if (p1->x == p2->x && p1->y == p2->y) return CAIRO_STATUS_SUCCESS; _cairo_slope_init (&dev_slope, p1, p2); add_sub_edge (stroker, p1, p2, &dev_slope, &start, &end); if (stroker->has_current_face) { /* Join with final face from previous segment */ join (stroker, &stroker->current_face, &start); } else if (!stroker->has_first_face) { /* Save sub path's first face in case needed for closing join */ stroker->first_face = start; stroker->has_first_face = TRUE; } stroker->current_face = end; stroker->has_current_face = TRUE; return CAIRO_STATUS_SUCCESS; } /* * Dashed lines. Cap each dash end, join around turns when on */ static cairo_status_t line_to_dashed (void *closure, const cairo_point_t *point) { struct stroker *stroker = closure; double mag, remain, step_length = 0; double slope_dx, slope_dy; double dx2, dy2; cairo_stroke_face_t sub_start, sub_end; const cairo_point_t *p1 = &stroker->current_face.point; const cairo_point_t *p2 = point; cairo_slope_t dev_slope; cairo_line_t segment; cairo_bool_t fully_in_bounds; memset (&sub_start, 0, sizeof (cairo_stroke_face_t)); memset (&sub_end, 0, sizeof (cairo_stroke_face_t)); stroker->has_initial_sub_path = stroker->dash.dash_starts_on; if (p1->x == p2->x && p1->y == p2->y) return CAIRO_STATUS_SUCCESS; fully_in_bounds = TRUE; if (stroker->has_bounds && (! _cairo_box_contains_point (&stroker->join_bounds, p1) || ! _cairo_box_contains_point (&stroker->join_bounds, p2))) { fully_in_bounds = FALSE; } _cairo_slope_init (&dev_slope, p1, p2); slope_dx = _cairo_fixed_to_double (p2->x - p1->x); slope_dy = _cairo_fixed_to_double (p2->y - p1->y); if (stroker->ctm_inverse) cairo_matrix_transform_distance (stroker->ctm_inverse, &slope_dx, &slope_dy); mag = normalize_slope (&slope_dx, &slope_dy); if (mag <= DBL_EPSILON) return CAIRO_STATUS_SUCCESS; remain = mag; segment.p1 = *p1; while (remain) { step_length = MIN (stroker->dash.dash_remain, remain); remain -= step_length; dx2 = slope_dx * (mag - remain); dy2 = slope_dy * (mag - remain); cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2); segment.p2.x = _cairo_fixed_from_double (dx2) + p1->x; segment.p2.y = _cairo_fixed_from_double (dy2) + p1->y; if (stroker->dash.dash_on && (fully_in_bounds || (! stroker->has_first_face && stroker->dash.dash_starts_on) || _cairo_box_intersects_line_segment (&stroker->join_bounds, &segment))) { add_sub_edge (stroker, &segment.p1, &segment.p2, &dev_slope, &sub_start, &sub_end); if (stroker->has_current_face) { /* Join with final face from previous segment */ join (stroker, &stroker->current_face, &sub_start); stroker->has_current_face = FALSE; } else if (! stroker->has_first_face && stroker->dash.dash_starts_on) { /* Save sub path's first face in case needed for closing join */ stroker->first_face = sub_start; stroker->has_first_face = TRUE; } else { /* Cap dash start if not connecting to a previous segment */ add_leading_cap (stroker, &sub_start); } if (remain) { /* Cap dash end if not at end of segment */ add_trailing_cap (stroker, &sub_end); } else { stroker->current_face = sub_end; stroker->has_current_face = TRUE; } } else { if (stroker->has_current_face) { /* Cap final face from previous segment */ add_trailing_cap (stroker, &stroker->current_face); stroker->has_current_face = FALSE; } } _cairo_stroker_dash_step (&stroker->dash, step_length); segment.p1 = segment.p2; } if (stroker->dash.dash_on && ! stroker->has_current_face) { /* This segment ends on a transition to dash_on, compute a new face * and add cap for the beginning of the next dash_on step. * * Note: this will create a degenerate cap if this is not the last line * in the path. Whether this behaviour is desirable or not is debatable. * On one side these degenerate caps can not be reproduced with regular * path stroking. * On the other hand, Acroread 7 also produces the degenerate caps. */ compute_face (point, &dev_slope, stroker, &stroker->current_face); add_leading_cap (stroker, &stroker->current_face); stroker->has_current_face = TRUE; } else stroker->current_face.point = *point; return CAIRO_STATUS_SUCCESS; } static cairo_status_t spline_to (void *closure, const cairo_point_t *point, const cairo_slope_t *tangent) { struct stroker *stroker = closure; cairo_stroke_face_t face; if ((tangent->dx | tangent->dy) == 0) { cairo_point_t t; face = stroker->current_face; face.usr_vector.x = -face.usr_vector.x; face.usr_vector.y = -face.usr_vector.y; face.dev_slope.x = -face.dev_slope.x; face.dev_slope.y = -face.dev_slope.y; face.dev_vector.dx = -face.dev_vector.dx; face.dev_vector.dy = -face.dev_vector.dy; t = face.cw; face.cw = face.ccw; face.ccw = t; join (stroker, &stroker->current_face, &face); } else { cairo_point_t rectangle[4]; compute_face (&stroker->current_face.point, tangent, stroker, &face); join (stroker, &stroker->current_face, &face); rectangle[0] = face.cw; rectangle[1] = face.ccw; rectangle[2].x = point->x - face.point.x; rectangle[2].y = point->y - face.point.y; face.point = *point; translate_point (&face.ccw, &rectangle[2]); translate_point (&face.cw, &rectangle[2]); rectangle[2] = face.ccw; rectangle[3] = face.cw; _cairo_traps_tessellate_convex_quad (stroker->traps, rectangle); } stroker->current_face = face; return CAIRO_STATUS_SUCCESS; } static cairo_status_t curve_to (void *closure, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { struct stroker *stroker = closure; cairo_line_join_t line_join_save; cairo_spline_t spline; cairo_stroke_face_t face; cairo_status_t status; if (stroker->has_bounds && ! _cairo_spline_intersects (&stroker->current_face.point, b, c, d, &stroker->line_bounds)) return line_to (closure, d); if (! _cairo_spline_init (&spline, spline_to, stroker, &stroker->current_face.point, b, c, d)) return line_to (closure, d); compute_face (&stroker->current_face.point, &spline.initial_slope, stroker, &face); if (stroker->has_current_face) { /* Join with final face from previous segment */ join (stroker, &stroker->current_face, &face); } else { if (! stroker->has_first_face) { /* Save sub path's first face in case needed for closing join */ stroker->first_face = face; stroker->has_first_face = TRUE; } stroker->has_current_face = TRUE; } stroker->current_face = face; /* Temporarily modify the stroker to use round joins to guarantee * smooth stroked curves. */ line_join_save = stroker->line_join; stroker->line_join = CAIRO_LINE_JOIN_ROUND; status = _cairo_spline_decompose (&spline, stroker->tolerance); stroker->line_join = line_join_save; return status; } static cairo_status_t curve_to_dashed (void *closure, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { struct stroker *stroker = closure; cairo_spline_t spline; cairo_line_join_t line_join_save; cairo_spline_add_point_func_t func; cairo_status_t status; func = (cairo_spline_add_point_func_t)line_to_dashed; if (stroker->has_bounds && ! _cairo_spline_intersects (&stroker->current_face.point, b, c, d, &stroker->line_bounds)) return func (closure, d, NULL); if (! _cairo_spline_init (&spline, func, stroker, &stroker->current_face.point, b, c, d)) return func (closure, d, NULL); /* Temporarily modify the stroker to use round joins to guarantee * smooth stroked curves. */ line_join_save = stroker->line_join; stroker->line_join = CAIRO_LINE_JOIN_ROUND; status = _cairo_spline_decompose (&spline, stroker->tolerance); stroker->line_join = line_join_save; return status; } static cairo_status_t _close_path (struct stroker *stroker) { if (stroker->has_first_face && stroker->has_current_face) { /* Join first and final faces of sub path */ join (stroker, &stroker->current_face, &stroker->first_face); } else { /* Cap the start and end of the sub path as needed */ add_caps (stroker); } stroker->has_initial_sub_path = FALSE; stroker->has_first_face = FALSE; stroker->has_current_face = FALSE; return CAIRO_STATUS_SUCCESS; } static cairo_status_t close_path (void *closure) { struct stroker *stroker = closure; cairo_status_t status; status = line_to (stroker, &stroker->first_point); if (unlikely (status)) return status; return _close_path (stroker); } static cairo_status_t close_path_dashed (void *closure) { struct stroker *stroker = closure; cairo_status_t status; status = line_to_dashed (stroker, &stroker->first_point); if (unlikely (status)) return status; return _close_path (stroker); } cairo_int_status_t _cairo_path_fixed_stroke_to_traps (const cairo_path_fixed_t *path, const cairo_stroke_style_t *style, const cairo_matrix_t *ctm, const cairo_matrix_t *ctm_inverse, double tolerance, cairo_traps_t *traps) { struct stroker stroker; cairo_status_t status; status = stroker_init (&stroker, path, style, ctm, ctm_inverse, tolerance, traps); if (unlikely (status)) return status; if (stroker.dash.dashed) status = _cairo_path_fixed_interpret (path, move_to_dashed, line_to_dashed, curve_to_dashed, close_path_dashed, &stroker); else status = _cairo_path_fixed_interpret (path, move_to, line_to, curve_to, close_path, &stroker); assert(status == CAIRO_STATUS_SUCCESS); add_caps (&stroker); stroker_fini (&stroker); return traps->status; }